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Abstract

The longest stretch L(n) of consecutive heads in n i.i.d. coin tosses is seen from the prism of
large deviations. We first establish precise asymptotics for the moment generating function of
L(n) and then show that there are precisely two large deviation principles, one concerning the
behavior of the distribution of L(n) near its nominal value log

1/p n and one away from it. We
discuss applications to inference and to logarithmic asymptotics of functionals of L(n).
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1 Introduction

The earliest reference to the longest stretch of consecutive successes in “random” trials is (as we
learn in the 1981 English translation [14, p. 138] of the 1928 book of von Mises) in a 1916 paper
of the German philosopher Karl Marbe and concerns the longest stretch of consecutive births of
children of the same sex as appearing in the birth register of a Bavarian town. (This was actually
used by parents to “predict” the sex of their child.) The longest stretch of same-sex births in 200
thousand birth registrations was actually 17 ≈ log2(200 × 103). Von Mises [13] was apparently the
first one to study the problem rigorously and his result can be seen in Feller’s Volume I [6, Section
XIII12].

If X1, X2, . . . are i.i.d. Bernoulli trials, P(Xi = 1) = p, P(Xi = 0) = q := 1 − p, and if L(n) is
the largest ℓ such that Xi+1 + · · · + Xi+ℓ = ℓ for some 0 ≤ i ≤ n − ℓ, then we call the base-1/p
logarithm log1/p n of n the nominal value of L(n) because, as Erdős and Rényi [4] show (in a more
general setup in fact; see also [5] and [12]),

lim
n→∞

L(n)

log1/p n
= 1, a.s. (1)
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The distribution of L(n) is not explicit. Yet, there are many estimates. The literature is littered
with them and one of us recently contributed to it in [8] (where other quantities, such as the number
of times that longest or shortest runs occur, are also explored).

Our principal interest in this paper is to see to what extent large deviations theory can be applied
to the problem of squeezing something useful about the distribution of L(n). We first establish
logarithmic asymptotics for the moment generating function EeλL(n), as n → ∞. The asymptotics
split in three parts: the subcritical regime, λ < ln(1/p), the supercritical regime, λ > ln(1/p),
and the critical one when λ = ln(1/p). These asymptotics can be used in combination with the
Gärtner-Ellis theorem (but see Remark 2 below) to derive a full large deviations principle (LDP).
There are precisely two LDPs. One concerning the behavior of the distribution of L(n) near its
nominal value log1/p n and another far away from it.

We outline the results below. Our starting point is asymptotics for the moment generating
function and this is what we do right away. Note that we use ln for natural logarithm and logb for
logarithm with base b. The symbol an ∼ bn means an/bn → 1 as n → ∞. Note also that we use
the term “Laplace transform” interchangeably with the term “moment generating function”. (The
variable λ ranges over the whole real line.)

Theorem 1. The moment generating function of L(n) has the following asymptotics:
(i) Subcritical regime: for λ < ln(1/p),

ln E exp {λL(n)} ∼ λ log1/p n;

(ii) Critical regime: for λ = ln(1/p),

ln E exp {λL(n)} ∼ 2λ log1/p n;

(iii) Supercritical regime: for λ > ln(1/p),

ln E exp {λL(n)} ∼ (λ− ln(1/p))n.

To the best of the authors’ knowledge, the asymptotics on the moment generating function in
Theorem 1 have not explicitly appeared in the literature. To show Theorem 1 there are several
options. One option is the use of the recursion formula

E exp {λL(n)} = q

n−1∑

j=0

pjE exp (λ max{L(n− j − 1), j}) + pneλn,

appearing in [8]. Another possible option is to use Fibonacci-type polynomials, as appearing in the
combinatorially-derived expressions for the moment generating function in [11]. But the simplest
method is a good estimate for the distribution of L(n); see Lemma 2. Why this lemma works to
establish the asymptotics in the subcritical and critical regimes is the subject of Section 2 (Lemmas
3 and 4).

One implication of Theorem 1 is that it immediately suggests the form of large deviations of
L(n). In [7], a large deviations type probability was established in the following form

lim
n→∞

1

n
lnP(L(n) < k) = −β, (2)
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for a fixed k where β is positive constant. Since, however, log1/p n is the nominal value of L(n),
in the sense that (1) holds, the limit (2) is not strictly speaking a result in the theory of large
deviations since it is not about the deviation from the most probable point log1/p n of the random
variables L(n). A partial answer was recently included in [9] who proved that

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
≥ 1 + x

)
= −x ln(1/p), x > 0. (3)

Despite that the research on head runs is a classical topic with many applications (see for instance
[1]), no explicit general large deviations principles can be found in the literature.

The subcritical asymptotics of Theorem 1 corresponds to the convergence L(n)/ log1/p n → 1
almost surely as n → ∞. Therefore we can study the large deviations on L(n)/ log1/p n. Let us first
define the function Λ∗(x) as

Λ∗(x) =

{
+∞, x < 1,

(x− 1) ln(1/p), x ≥ 1.
(4)

Notice that Λ∗ is lower semicontinuous with {x ∈ R : Λ∗(x) ≤ c} compact for all c ≥ 0. This means
that Λ∗ is a good rate function (in the terminology of [3]). Our references to large deviations theory
are Dembo and Zeitouni [3] and Wentzell [17]. The following full LDP is obtained as a corollary to
Theorem 1.

Corollary 1 (LDP near the nominal value). The normalized longest head run L(n)/ log1/p n sat-
isfies a large deviation principle with a good rate function Λ∗(x) given by (4) and speed log1/p n.
Namely,
(i) for any open set O ⊂ R,

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
∈ O

)
≥ − inf

x∈O
Λ∗(x); (5)

(ii) for any closed set F ⊂ R,

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
∈ F

)
≤ − inf

x∈F
Λ∗(x). (6)

Remark 1. Evidently, the large deviation principle presented in Corollary 1 generalizes the result
(3) in [9], which comes from choosing the open set O = (1+x,∞) and the closed set F = [1+x,∞).

Remark 2. [Connections with the Gärtner-Ellis theorem] The proof of the large deviation upper
bound (6) comes directly from the Gärtner-Ellis theorem (cf. [3]). We note that the rate function
Λ∗ is the Fenchel-Legendre transform of the following function

Λ(λ) =





+∞, λ > ln(1/p),

2λ, λ = ln(1/p),

λ, λ < ln(1/p),

that is, Λ∗(x) = supλ∈R [λx− Λ(λ)]. There is a slight catch here: to establish the lower bound, the
Gärtner-Ellis theorem requires that the function Λ be essentially smooth, namely, that limk→∞ |Λ′(λk)| =
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∞ as λk → ln(1/p). But this is not true here. Therefore the Gärtner-Ellis theorem does not cover
our case. If instead we look at the lower bound proposed in the the Gärtner-Ellis theorem, then
we have for any open set O,

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
∈ O

)
≥ − inf

x∈O∩H
Λ∗(x),

where H is the so called set of exposed points [3, Page 44] of Λ∗. In our case, it is easy to see that
the set H consists of only one point H = {1}. So the proposed lower bound from the Gärtner-Ellis
theorem becomes trivial since

inf
x∈O∩H

Λ∗(x) = Λ∗(1) = 0.

In summary, our large deviation principle in Theorem 1 gives a non-trivial example which the
Gärtner-Ellis theorem does not cover.

The supercritical regime of Theorem 1 gives another large deviation result with a good rate
function Λ̃∗(x) defined by

Λ̃∗(x) =





+∞, x < 0,

x ln(1/p), 0 ≤ x ≤ 1,

+∞, x > 1.

(7)

Corollary 2 (LDP away from the nominal value). The normalized longest head run L(n)/n satisfies
a large deviations principle with a good rate function Λ̃∗(x) given by (7) and speed n. Namely,
(i) for any open set O ⊂ R,

lim
n→∞

1

n
ln P

(
L(n)

n
∈ O

)
≥ − inf

x∈O
Λ̃∗(x);

(ii) for any closed set F ⊂ R,

lim
n→∞

1

n
ln P

(
L(n)

n
∈ F

)
≤ − inf

x∈F
Λ̃∗(x).

Another implication of Theorem 1 and its corollaries 1 and 2 is in obtaining asymptotics for
other functionals of L(n). We summarize the results as follows.

Corollary 3. (I) If f : R+ → R is continuous and satisfies one of the two conditions

lim
m→∞

lim
n→∞

1

log1/p n
ln E

[
exp

{
log1/p n · f(

L(n)

log1/p n
)

}
· 1{

f(
L(n)

log1/p n
)≥m

}

]
= −∞, (A.1)

lim
n→∞

1

log1/p n
ln E exp

{
log1/p n · γ · f(

L(n)

log1/p n
)

}
< ∞, for some γ > 1, (A.2)

then it holds that

lim
n→∞

1

log1/p n
ln E exp

{
log1/p n · f(

L(n)

log1/p n
)

}
= max

x∈R
[f(x) − Λ∗(x)].
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(II) If g : R+ → R is continuous and satisfies one of the two conditions

lim
m→∞

lim
n→∞

1

n
ln E

[
exp

{
n · g(

L(n)

n
)

}
· 1{

g(
L(n)
n

)≥m
}
]

= −∞, (B.1)

lim
n→∞

1

n
ln E exp

{
n · γ · g(

L(n)

n
)

}
< ∞, for some γ > 1, (B.2)

then it holds that

lim
n→∞

1

n
ln E exp

{
n · g(

L(n)

n
)

}
= max

x∈R
[g(x) − Λ̃∗(x)].

Here we list several functions f and g for which the conclusions of Corollary 4 hold. The
verification is included in Section 4.

• f(x) and g(x) are continuous and bounded. In this case, (A.1), (A.2), (B.1) and (B.2) hold.

• f(x) = cxα, x ∈ R+, where c > 0 and 0 < α < 1. It is proved in Section 4 that (A.1) holds.

• g(x) satisfies the condition: there is m > 0 such that if |g(x)| ≥ m, then x > 1. For instance,
with c1, c2, c3, c4, α positive constants, the functions

c1x
α, c2e

c3xα
, c4 ln(x + α)

satisfy this condition. Condition (B.1) is fulfilled for this type of functions since 1{
g(

L(n)
n

)≥m
} ≤

1
{

L(n)
n

>1
} = 0.

Some easy conclusions of Theorem 1 concern well-known asymptotics for the moments of L(n).
Formally taking a derivative at λ = 0 of the expression in the subcritical regime gives

EL(n)k ∼ (log1/p n)k, k ∈ N.

The asymptotic expressions of the first two moments can be found in [16], and the higher order
moments are discussed in [15, page 63]. For convenience, we include the asymptotic mean as follows

EL(n) = log1/p n + log1/p(1 − p) + log1/p(e
γ) −

1

2
+ ε(n) (8)

where γ = 0.5772 . . . is Euler’s constant, and ε(n) is “small”.

The rest of the paper is organized as follows. In Section 2 we prove Theorem 1, along with some
auxiliary results. In Section 3 we prove the large deviation principles, stated in Corollaries 1 and
2. === The proof of Corollary 4 is given in 4. We discuss an application to inference in Section
5, and some open problems in Section 6. To save some space we use the abbreviation

ℓ(n) := log1/p n

whenever convenient. As usual, we let ⌊x⌋ to be the largest integer n such that n ≤ x and ⌈x⌉ to
be the smallest integer n such that n ≥ x.
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2 Laplace transform asymptotics

We obtain logarithmic asymptotics for E exp{λL(n)}, for all λ ∈ R, in several steps. First, we
obtain a lower bound valid for all λ ∈ R. Then we obtain an upper bound for the subcritical
case (λ < ln(1/p)). These two bounds combined give the exact logarithmic asymptotics for the
subcritical case. The limit in the critical case (λ = ln(1/p)) requires special care and is treated
separately. Finally, we obtain asymptotics for the supercritical case (λ > ln(1/p)).

Lemma 1. It holds that

lim
n→∞

1

log1/p n
ln E exp {λL(n)} ≥ λ,

for all λ ∈ R.

Proof. The case λ = 0 is trivial. Assume λ > 0. Then, for 0 < ε < 1,

E exp{λL(n)} ≥ E
[

exp{λL(n)}; L(n) ≥ (1 − ε) log1/p n
]

≥ exp{λ(1 − ε) log1/p n}P(L(n) ≥ (1 − ε) log1/p n).

Hence
1

log1/p n
ln E exp{λL(n)} ≥ λ(1 − ε) +

1

log1/p n
ln P(L(n) ≥ (1 − ε) log1/p n)

Since P(L(n) ≥ (1 − ε) log1/p n) → 1,

lim
n→∞

1

log1/p n
ln E exp{λL(n)} ≥ λ(1 − ε),

and letting ε ↓ 0 we obtain the result. When λ < 0, we use

E exp{λL(n)} ≥ E
[

exp{λL(n)}; L(n) ≥ (1 + ε) log1/p n
]

and proceed similarly.

The following bound for the distribution of L(n) is known in the literature, but we give a simple
proof below for completeness.

Lemma 2. For all k, n ∈ N, 1 ≤ k ≤ n,

(1 − pk)n−k+1 ≤ P(L(n) < k) ≤ (1 − qpk)n−k+1.

Proof. Let X1, X2, . . . be i.i.d. with P(X1 = 1) = p, P(X1 = 0) = q. Let Si = X1 + · · · + Xi, i ≥ 1.
Notice that L(n) < k if and only if Sm − Sm−k < k for all k ≤ m ≤ n. By a standard correlation
inequality,

P

(
n⋂

m=k

{Sm − Sm−k < k}

)
≥

n∏

m=k

P(Sm − Sm−k < k) =
n∏

m=k

(1 − pk) = (1 − pk)n−k+1,
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and this is the lower bound. For the upper bound, since, trivially, L(k − 1) < k, we have

P(L(n) < k) =
n∏

m=k

P(L(m) < k)

P(L(m− 1) < k)
.

But, since, trivially again, L(m) ≥ L(m− 1) for all m,

P(L(m− 1) < k) = P(L(m) < k) + P(L(m− 1) < k ≤ L(m)),

and observe that

P(L(m− 1) < k ≤ L(m)) = P(L(m− k − 1) < k, Xm−k = 0, Xm−k+1 = · · · = Xm = 1)

= P(L(m− k − 1) < k) qpk ≥ P(L(m− 1) < k) qpk.

Substituting this into the previous display gives P(L(m) < k) ≤ (1 − qpk)P(L(m − 1) < k) which
implies that P(L(n) < k) ≤

∏n
m=k(1 − qpk) = (1 − qpk)n−k+1, as claimed.

We next obtain an upper bound in the subcritical regime. Remember that ℓ(n) =: log1/p n.

Lemma 3. It holds that

lim
n→∞

1

log1/p n
ln E exp {λL(n)} ≤ λ,

for −∞ < λ < ln(1/p).

Proof. Suppose first that 0 < λ < ln(1/p), pick ε > 0, and write

EeλL(n) = E

(
eλL(n);

L(n)

ℓ(n)
− 1 ≤ ε

)
+ E

(
eλL(n);

L(n)

ℓ(n)
− 1 > ε

)
=: A+(n) + B+(n). (9)

The first term is estimated as

A+(n) ≤ eλ(1+ε)ℓ(n)
P

(
L(n)

ℓ(n)
− 1 ≤ ε

)
, (10)

and so
lnA+(n)

ℓ(n)
≤ λ(1 + ε) + o(1),

implying that

lim
n→∞

lnA+(n)

ℓ(n)
≤ λ.

For the second term we write

B+(n) :=

∞∑

k=1

E

(
eλL(n); 1 + kε <

L(n)

ℓ(n)
≤ 1 + (k + 1)ε

)

≤
∞∑

k=1

eλ(1+(k+1)ε)ℓ(n)
P

(
L(n)

ℓ(n)
> 1 + kε

)
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Observe now, from Lemma (2), that

P(L(n) ≥ k) = 1 − P(L(n) < k) ≤ 1 − (1 − pk)n−k+1 ≤ (n− k + 1)pk ≤ npk,

for all 0 ≤ k ≤ n, and, trivially, for all k > n also. This implies that

P(L(n) > t) ≤ npt, t ≥ 0,

and so

P

(
L(n)

ℓ(n)
> 1 + kε

)
≤ n p(1+kε)ℓ(n) = n · n−(1+kε) = n−kε.

Therefore,

B+(n) ≤ eλ(1+ε)ℓ(n)
∞∑

k=1

eλkεℓ(n) n−kε

= eλ(1+ε)ℓ(n)
∞∑

k=1

n
−
(
1− λ

ln(1/p)

)
kε

= eλ(1+ε)ℓ(n)

(
n

(
1− λ

ln(1/p)

)
ε
− 1

)−1

,

whence

lim
n→∞

lnB+(n)

ℓ(n)
≤ λ.

Since

lim
n→∞

lnEeλL(n)

ℓ(n)
= max

{
lim
n→∞

lnA+(n)

ℓ(n)
, lim
n→∞

lnB+(n)

ℓ(n)

}

the result follows.

Suppose next that λ < 0. For 0 < ε < 1, write

EeλL(n) = E

(
eλL(n);

L(n)

ℓ(n)
− 1 > −ε

)
+ E

(
eλL(n);

L(n)

ℓ(n)
− 1 ≤ −ε

)
=: A−(n) + B−(n)

For the first term we have

A−(n) ≤ eλ(1−ε)ℓ(n)
P

(
L(n)

ℓ(n)
− 1 > −ε

)

implying that

lim
n→∞

lnA−(n)

ℓ(n)
≤ λ.

As for the second term,

B−(n) =

⌊1/ε⌋−1∑

k=1

E

(
eλL(n); 1 − (k + 1)ε ≤

L(n)

ℓ(n)
< 1 − kε

)

≤

⌊1/ε⌋−1∑

k=1

eλ(1−(k+1)ε)ℓ(n)
P

(
L(n)

ℓ(n)
< 1 − kε

)
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Since there are only finitely many terms in the sum, we can simply write

lim
n→∞

lnB−(n)

ℓ(n)
≤ max

1≤k≤⌊1/ε⌋−1

{
λ(1 − (k + 1)ε) + lim

n→∞

1

ℓ(n)
lnP

(
L(n)

ℓ(n)
< 1 − kε

)}

≤ max
1≤k≤⌊1/ε⌋−1

{λ(1 − (k + 1)ε) −∞} = −∞,

where −∞ appears because of Lemma 7 below. We again conclude that lim ℓ(n)−1 lnEeλL(n) ≤
λ.

The critical case is treated next.

Lemma 4. When λ = ln(1/p), it holds that

lim
n→∞

1

log1/p n
ln, E exp {λL(n)} = 2λ.

Proof. Fix sufficiently small ε > 0. Using the probability estimates of Lemma 2 we obtain that
there exist positive constants c1, c2 such that

c2 n
−(1+kε) (n + 1 − (1 + kε)ℓ(n)) ≤ P

(
L(n)

ℓ(n)
> 1 + kε

)
≤ c1 n

−(1+kε) (n + 1 − (1 + kε)ℓ(n))

uniformly over all k such that

1 ≤ k ≤

⌊
1

ε

(
n

ℓ(n)
− 1

)⌋
=: Nn. (11)

We first obtain a lower bound. From the estimate above,

EeλL(n) ≥ E

(
eλL(n);

L(n)

ℓ(n)
> 1 + ε

)

≥

Nn∑

k=1

E

(
eλL(n); 1 + kε <

L(n)

ℓ(n)
≤ 1 + (k + 1)ε

)

≥

Nn∑

k=1

E

(
eλℓ(n)(1+kε); 1 + kε <

L(n)

ℓ(n)
≤ 1 + (k + 1)ε

)
.

Since λ = ln(1/p) and ℓ(n) = (lnn)/ ln(1/p) have exp(λℓ(n)) = exp(lnn) = n. Hence

EeλL(n) ≥ n

Nn∑

k=1

nkε

[
P

(
L(n)

ℓ(n)
> 1 + kε

)
− P

(
L(n)

ℓ(n)
> 1 + (k + 1)ε

)]

≥ n

Nn∑

k=1

nkε
[
c2 n

−(1+kε) (n + 1 − (1 + kε)ℓ(n)) − c1 n
−(1+(k+1)ε) (n + 1 − (1 + (k + 1)ε)ℓ(n))

]

= n

Nn∑

k=1

[
c2 n

−1 (n + 1 − (1 + kε)ℓ(n)) − c1 n
−(1+ε) (n + 1 − (1 + (k + 1)ε)ℓ(n))

]
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=: n S(n).

Hence
lnEeλL(n)

ℓ(n)
≥

lnn

ℓ(n)
+

ln S(n)

ℓ(n)
= ln(1/p) + ln(1/p)

ln S(n)

lnn.

We now claim that the last ratio converges to 1. This follows by direct computation:

ln S(n) ∼ ln

[
c2n

2ε log1/p n
−

c1n
1−ε

2ε log1/p n

]
∼ ln

[
c2n

2ε log1/p n

]
= lnn + o(lnn).

Hence we have proved a lower bound:

lim
n→∞

lnEeλL(n)

ℓ(n)
≥ 2 ln(1/p).

To get an upper bound, we use the decomposition (9) as in the proof of Lemma 3, but with
λ = ln(1/p). The first term is estimated in precisely the same manner; see (10). Hence

lim
n→∞

lnA+(n)

ℓ(n)
≤ λ = ln(1/p). (12)

For the second term, we write

B+(n) = E

(
eλL(n);

L(n)

ℓ(n)
− 1 > ε

)

=

Nn∑

k=1

E

(
eλL(n); 1 + kε <

L(n)

ℓ(n)
≤ 1 + (k + 1)ε

)
,

where Nn is as in (11), giving

B+(n) ≤

Nn∑

k=1

eλℓ(n)[1+(k+1)ε]
P

(
L(n)

ℓ(n)
> 1 + kε

)

= n1+ε
Nn∑

k=1

nkε
P

(
L(n)

ℓ(n)
> 1 + kε

)

≤ n1+ε
Nn∑

k=1

c1 n
−1 (n + 1 − (1 + kε)ℓ(n))

from which

lnB+(n)

ℓ(n)
≤ (1 + ε) ln(1/p) + ln(1/p)

1

lnn
ln

Nn∑

k=1

c1 n
−1 (n + 1 − (1 + kε)ℓ(n)).

By direct computation,

ln

Nn∑

k=1

c1 n
−1 (n + 1 − (1 + kε)ℓ(n)) ∼ ln

[
c1n

ε log1/p n

]
= lnn + o(lnn).
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Combining the last two displays and letting ε ↓ 0 we obtain

lim
n→∞

lnB+(n)

ℓ(n)
≤ 2 ln(1/p). (13)

From the decomposition (9), with the estimates (12) and (13), we conclude that

lim
n→∞

lnEeλL(n)

ℓ(n)
= max

{
lim
n→∞

lnA+(n)

ℓ(n)
, lim
n→∞

lnB+(n)

ℓ(n)

}
≤ max{ln(1/p), 2 ln(1/p)} = 2 ln(1/p).

In order to study the asymptotic behavior of E exp {λL(n)} when λ > ln(1/p), we use the
following result.

Lemma 5. For fixed 0 ≤ x ≤ 1, it holds that

lim
n→∞

1

n
ln P

(
L(n)

n
≥ x

)
= −x ln(1/p).

Proof. We apply the inequalities of Lemma 2 with k = ⌈nx⌉ and obtain

1 −
(

1 − qp⌈nx⌉
)n−⌈nx⌉+1

≤ P

(
L(n)

n
≥ x

)
≤ 1 −

(
1 − p⌈nx⌉

)n−⌈nx⌉+1
.

Since, for 1− (1− a)N ≤ Na for all 0 ≤ a ≤ 1, and since 1− (1− a)N ≥ (N − 1)a for all sufficiently
small a ≥ 0, we have that

(n− ⌈nx⌉) qp⌈nx⌉ ≤ P

(
L(n)

n
≥ x

)
≤ (n− ⌈nx⌉ + 1) p⌈nx⌉,

for all sufficiently large n. Taking logarithms, dividing by n, and sending n to ∞ finishes the
proof.

Lemma 6. It holds that

lim
n→∞

1

n
ln E exp {λL(n)} = λ− ln(1/p),

for λ > ln(1/p).

Proof. For the lower bound, fix 0 < x < 1, write

EeλL(n) ≥ E

(
eλL(n);

L(n)

n
> x

)
≥ eλxn P

(
L(n)

n
> x

)
,

and use Lemma 5:

lim
n→∞

1

n
ln EeλL(n) ≥ λx− x ln(1/p) → λ− ln(1/p), as x → 1.

11



For the upper bound, pick ε > 0 and write

EeλL(n) = E

(
eλL(n);

L(n)

n
≤ ε

)
+ E

(
eλL(n);

L(n)

n
> ε

)

≤ eλεn +

[1/ε]−1∑

k=1

E

(
eλL(n); kε <

L(n)

n
≤ (k + 1)ε

)

≤ eλεn +

[1/ε]−1∑

k=1

eλ(k+1)εn
P

(
L(n)

n
> kε

)

Hence (with a ∨ b := max(a, b))

lim
n→∞

1

n
EeλL(n) ≤ (λε) ∨ max

1≤k≤[1/ε]−1
{λ(k + 1)ε− kε ln(1/p)}

≤ λε + λ− ln(1/p) → λ− ln(1/p), as ε → 0.

where we used Lemma 5 again and the assumption that λ− ln(1/p) > 0.

Lemma 7 (Theorem 1.1 in [9]). For each x > 0, we have

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
≥ 1 + x

)
= − ln(1/p).

For every 0 < x < 1, we have

lim
n→∞

1

log1/p n
ln

[
− ln P

(
L(n)

log1/p n
≤ 1 − x

)]
= x ln(1/p).

Note that this lemma can be simply derived based on Lemma 2, but what has actually been proved
in [9] is precise asymptotics without the logarithm.

3 Large deviations principles

We study the large deviations principles announced in Corollaries 1 and 2. Consider the logarithmic
moment generating function of L(n)/ log1/p n, defined by

Λn(λ) = ln E exp
{
λL(n)/ log1/p n

}
, λ ∈ R.

The proof of Corollary 1 is based on the cumulant, namely,

Λ(λ) := lim
n→∞

1

log1/p n
Λn(λ log1/p n). (14)

That this limit exists is a direct consequence of Theorem 1:

12



Proposition 1. The limit in (14) exists and is given by

Λ(λ) =





+∞, λ > ln(1/p),

2λ, λ = ln(1/p),

λ, λ < ln(1/p).

The Fenchel-Legendre transform of Λ is the function x 7→ supλ∈R[λx− Λ(λ)] which (as an easy
calculation shows) is given by the function Λ∗ defined in (4):

sup
λ∈R

[λx− Λ(λ)] = Λ∗(x) =

{
+∞, x < 1,

(x− 1) ln(1/p), x ≥ 1.

Proof of Corollary 1. To prove the upper bound (6) we apply the Gärtner-Ellis theorem (cf. Section
2.3 in [3]). For the lower bound (5), we must give a separate argument. It suffices to prove that
for a fixed point y > 1,

lim
δ→0

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
∈ By,δ

)
≥ −(y − 1) ln(1/p), (15)

where By,δ is the open ball centered at y with a radius δ. To achieve (15), we write

P

(
L(n)

log1/p n
∈ By,δ

)
= P

(
L(n)

log1/p n
> y − δ

)
− P

(
L(n)

log1/p n
≥ y + δ

)
.

In order to analyze the logarithm, we apply an inequality in the form ln(a − b) ≥ ln(a) − b
a−b for

a > b > 0. Therefore,

lim
δ→0

lim
n→∞

1

ℓ(n)
ln P

(
L(n)

ℓ(n)
∈ By,δ

)

≥ lim
δ→0

lim
n→∞

1

ℓ(n)


ln P

(
L(n)

ℓ(n)
> y − δ

)
−

P

(
L(n)
ℓ(n) ≥ y + δ

)

P

(
L(n)
ℓ(n) > y − δ

)
− P

(
L(n)
ℓ(n) ≥ y + δ

)


 . (16)

We can apply Lemma 7 to handle the first limit as follows

lim
δ→0

lim
n→∞

1

ℓ(n)
ln P

(
L(n)

ℓ(n)
> y − δ

)
= lim

δ→0
−(y − 1 − δ) ln(1/p) = −(y − 1) ln(1/p). (17)

For the last ratio term in (16), it follows from applying Lemma 7 twice that

P

(
L(n)

ℓ(n)
≥ y + δ

)
≤ exp {[−(y − 1 + δ) ln(1/p) + ε1] ℓ(n)}

and

P

(
L(n)

ℓ(n)
> y − δ

)
≥ exp {[−(y − 1 − δ) ln(1/p) − ε2] ℓ(n)}

for sufficiently small ε1 > 0 and ε2 > 0. Thus, assuming 2δ ln(1/p) − ε1 − ε2 > 0,

13



P

(
L(n)
ℓ(n) ≥ y + δ

)

P

(
L(n)
ℓ(n) > y − δ

)
− P

(
L(n)
ℓ(n) ≥ y + δ

) =
1

P

(
L(n)
ℓ(n) > y − δ

)
/P
(
L(n)
ℓ(n) ≥ y + δ

)
− 1

≤
1

e(2δ ln(1/p)−ε1−ε2)ℓ(n) − 1
→ 0, as n → ∞. (18)

Then (15) follows by substituting (17) and (18) back into (16).

We now pass to the second large deviations principle. Consider the logarithmic moment gener-
ating function of L(n)/n:

Λ̃n(λ) = ln E exp {λL(n)/n} , λ ∈ R,

and define its cumulant by

Λ̃(λ) := lim
n→∞

1

n
Λn(λn). (19)

It is again Theorem 1 that is responsible for the existence of the cumulant:

Proposition 2. The limit in (19) exists and is given by the formula

Λ̃(λ) =

{
λ− ln(1/p), λ ≥ ln(1/p),

0, λ < ln(1/p).

An easy calculation shows that

sup
λ∈R

[λx− Λ̃(λ)] = Λ̃∗(x) =





+∞, x < 0,

x ln(1/p), 0 ≤ x ≤ 1,

+∞, x > 1.

which is the function announced in (7). The proof of Corollary 2 now proceeds along the same
lines as that of Corollary 1 and is therefore omitted.

4 Exponential functionals

The proof of Corollary is straightforward and follows from Varadhan’s integral lemma (cf. [3, Section
4.3]).

We next verify that the function f(x) = c · xα, 0 < α < 1, satisfies the condition (A.1) in
Corollary 4. Without loss of generality, we assume c > 0 and obtain

1

ℓ(n)
lnE

[
exp

(
ℓ(n)f(

L(n)

ℓ(n)
)

)
; f(

L(n)

ℓ(n)
) ≥ m

]

14



=
1

ℓ(n)
lnE

[
exp

(
cℓ(n)(

L(n)

ℓ(n)
)α
)

; (
L(n)

ℓ(n)
)α > m

]

=
1

ℓ(n)
ln

∞∑

k=0

E

[
exp

(
cℓ(n)(

L(n)

ℓ(n)
)α
)

; m + k < (
L(n)

ℓ(n)
)α ≤ m + (k + 1)

]

≤
1

ℓ(n)
ln

∞∑

k=0

ecℓ(n)(m+k+1)
P

(
m + k < (

L(n)

ℓ(n)
)α
)

= c(m + 1) +
1

ℓ(n)
ln

∞∑

k=0

eckℓ(n)P

(
(m + k)1/α <

L(n)

ℓ(n)

)
.

We now apply Lemma 2 with k = ⌈(m + k)1/αℓ(n)⌉ + 1 and obtain

P

(
L(n)

ℓ(n)
> (m + k)1/α

)
= P

(
 L(n) > ⌈ℓ(n)(m + k)1/α⌉

)

= 1 − P

(
 L(n) < ⌈ℓ(n)(m + k)1/α⌉ + 1

)

≤ 1 − (1 − p⌈ℓ(n)(m+k)1/α⌉+1)n−⌈ℓ(n)(m+k)1/α⌉

≤ (n− ⌈ℓ(n)(m + k)1/α⌉)p⌈ℓ(n)(m+k)1/α⌉+1

≤ npℓ(n)(m+k)1/α

= n1−(m+k)1/α .

Combining previous two estimates gives

1

ℓ(n)
lnE

[
exp

(
ℓ(n)f(

L(n)

ℓ(n)
)

)
; f(

L(n)

ℓ(n)
) ≥ m

]

≤ c(m + 1) +
1

ℓ(n)
ln

(
∞∑

k=0

eckℓ(n)n−(m+k)1/α+1

)

= c(m + 1) +
1

ℓ(n)
ln

(
∞∑

k=0

nck/ ln(1/p)n−(m+k)1/α+1

)

≤ c(m + 1) +
1

ℓ(n)
ln

(
∞∑

k=0

nck/ ln(1/p)n−(m1/α+k1/α)/2+1

)

= c(m + 1) −
(m1/α − 1) ln(1/p)

2
+

1

ℓ(n)
ln

(
∞∑

k=0

nck/ ln(1/p)n−k1/α/2

)

→ c(m + 1) −
(m1/α − 1) ln(1/p)

2
, as n → ∞ (since α < 1).

Therefore (A.1) follows by taking m → ∞.

With f(x) = txα, t > 0, 0 < α < 1, we have

max
x∈R

{f(x) − Λ∗(x)} = max
x≥1

{txα − λp(x− 1)},
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where λp := ln(1/p), for brevity. There are two cases:
Case 1: t > ln(1/p)/α. Then the maximum above is achieved at x∗ = (αt/λp)1/(1−α) and equals

t
1

1−α λ
−α
1−α
p Cα + λp,

where Cα is the positive quantity

Cα = α
α

1−α − α
1

1−α .

Since ℓ(n)f(L(n)/ℓ(n)) = tℓ(n)1−αL(n)α = tλα−1
p (lnn)1−αL(n)α, Corollary 4 gives

lnE

[
etλ

α−1
p (lnn)1−αL(n)α

]
∼

lnn

λp

(
t

1
1−α λ

−α
1−α
p Cα + λp

)
= (lnn)

(
t

1
1−α λ

−1
1−α
p Cα + 1

)
.

Case 2: t ≤ ln(1/p)/α. Then the maximum is achieved at x∗ = 1 and equals t. Hence

lnE

[
etλ

α−1
p (lnn)1−αL(n)α

]
∼

t

λp
lnn.

The expressions become neater upon a change of variables and are summarized thus

Corollary 4. For all t > 0, for all 0 < α < 1, as n → ∞,

lnE

[
et (lnn)1−αL(n)α

]
∼





t

lnα(1/p)
lnn, if t ≤ lnα(1/p)

α

[(
t

lnα(1/p)

) 1
1−α (

α
α

1−α − α
1

1−α

)
+ 1

]
lnn, otherwise.

5 An applications to inference

Let us consider a classical problem in confidence intervals. Let {Xk}1≤k≤n be an i.i.d. random
sample from a Bernoulli population X with P(X = 1) = p and P(X = 0) = 1 − p, 0 < p < 1. Our
aim in this section is to construct a 100(1 − α)% confidence interval for p with a given significance
level α, when p is close to 1 (or 0) and n is not very large.

The normal approximation to the binomial random variable K :=
∑n

i=1Xi does not work well
when p is close to 1 (or 0). Nevertheless, there are several alternatives in this case: Wilson’s score
interval [18], the Clopper-Pearson interval [2], and others (such as Jeffreys interval, Agresti-Coull
Interval etc.). In this section, we propose another confidence interval based on the longest head
run L(n) with the help of Corollary 1. It turns out that this type of confidence intervals works
much better than others.

To construct such confidence intervals, on one hand it comes from Corollary 1 that, for each
x > 0,

lim
n→∞

1

log1/p n
ln P

(
L(n)

log1/p n
≥ 1 + x

)
= −x · ln(1/p).

On the other hand, Lemma 7 below states that, for every 0 < x < 1,

lim
n→∞

1

log1/p n
ln

[
− ln P

(
L(n)

log1/p n
≤ 1 − x

)]
= x · ln(1/p).
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Combining these two asymptotics gives a 100(1 − α)% confidence interval of p as follows:

Ip =

(
exp

{
−

ln(n) − ln(α/2)

L̂(n)

}
, exp

{
−

ln(n) − ln(− ln(α/2))

L̂(n)

})
(20)

where L̂(n) is a point estimate of L(n). A reasonable point estimate of L(n) is

L̂(n) = Lobs(n) −

[
log1/p̂(1 − p̂) + log1/p̂(e

γ) −
1

2

]

with Lobs(n) being the observed longest head run in n trials, and p̂ := k/n being the sample
proportion. To see this, firstly we know that in the long run L(n)/ log1/p n → 1, therefore we

want that an estimate satisfies EL̂(n) → log1/p n. Secondly, it follows from the mean (8) that

EL̂(n) = log1/p n+
[
log1/p(1 − p) + log1/p(e

γ)
]
−
[
log1/p̂(1 − p̂) + log1/p̂(e

γ)
]

+ ε(n), which is quite

close to log1/p n. This explains that (20) is an appropriate confidence interval for p.

Below we have simulations for the derived confidence interval Ip in (20) when p is close to 1 (the
case p is close to 0 can be similarly handled), and we make several comparisons with Wilson score
intervals and Clopper-Pearson intervals. Based on the simulations (see Table 1), it is evident that
our confidence interval (20) works much better than others when p is close to 1 and n is not very
large. In Table 2, for larger p and n we apply the normal approximation to the Binomial random
variable. In this case it turned out that lower bound of the normal approximation intervals works
better than Wilson score intervals and Clopper-Pearson intervals, but the upper bound does not.
In any case, our confidence interval (20) still works the best among them.

Table 1. Wilson score interval (WS) — Clopper-Pearson interval (CP) — Longest run interval (LR)

p = 0.9500 n = 200 α = 0.05
p̂ = 0.9650 p̂ = 0.9450 p̂ = 0.9600 p̂ = 0.9500 p̂ = 0.9700

WS: (0.9295, 0.9829) (0.9042, 0.9690) (0.9231, 0.9796) (0.9104, 0.9726) (0.9361, 0.9862)
CP: (0.9292, 0.9858) (0.9037, 0.9722) (0.9227, 0.9826) (0.9100, 0.9758) (0.9358, 0.9889)
LR: (0.9329, 0.9696) (0.9145, 0.9611) (0.9243, 0.9656) (0.9325, 0.9694) (0.9484, 0.9767)

p = 0.98 n = 200 α = 0.05
p̂ = 0.9800 p̂ = 0.9850 p̂ = 0.9700 p̂ = 0.9800 p̂ = 0.9750

WS: (0.9497, 0.9922) (0.9568, 0.9949) (0.9361, 0.9862) (0.9497, 0.9922) (0.9428, 0.9893)
CP: (0.9496, 0.9945) (0.9568, 0.9969) (0.9358, 0.9889) (0.9496, 0.9945) (0.9426, 0.9918)
LR: (0.9657, 0.9846) (0.9751, 0.9889) (0.9578, 0.9810) (0.9703, 0.9867) (0.9606, 0.9821)

Table 2. Wilson score interval (WS) — Clopper-Pearson interval (CP) — Longest run interval (LR)
— Normal approximation (N)

p = 0.9950 n = 1000 α = 0.05
p̂ = 0.9950 p̂ = 0.9940 p̂ = 0.9950 p̂ = 0.9960 p̂ = 0.9960

N: (0.9906, 0.9994) (0.9892, 0.9988) (0.9906, 0.9994) (0.9921, 0.9999) (0.9921, 0.9999)
WS: (0.9883, 0.9979) (0.9870, 0.9972) (0.9883, 0.9979) (0.9898, 0.9984) (0.9898, 0.9984)
CP: (0.9884, 0.9984) (0.9870, 0.9978) (0.9884, 0.9984) (0.9898, 0.9989) (0.9898, 0.9989)
LR: (0.9915, 0.9955) (0.9909, 0.9952) (0.9919, 0.9957) (0.9941, 0.9969) (0.9938, 0.9967)
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6 Open problems

A problem for future research would be the study of a large deviation principle for the random-
dimensional random vector R(n) =

(
R1(n), R2(n), . . . , RL(n)(n)

)
of counts of successive runs of

all lengths. That is, let Rℓ(n) be the number of head runs of length ℓ up to the n-th coin toss.
Distributional relations for R(n) were studied in [8].

It would further be interesting to obtain large large deviation principles for longest runs in a
Markov chain. In other words, assume that (Xn) is a Markov chain with finite (or countable) state
space S and let L(x, n) be the longest sojourn time at a state x ∈ S before time n. Although there
are Stein-Chen type estimates [10, 19] for the distribution of such quantities, the errors in these
estimates are too big for the study of a large deviation principle. We would like to obtain an LDP
for L(x, n) or for the vector (L(x, n), x ∈ S) which would, by contraction principle, give us an LDP
for L(n) := supx∈S L(x, n).
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