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Abstract Let B1,B2, . . . be independent one-dimensional Brownian motions param-
eterized by the whole real line such that Bi(0) = 0 for every i ≥ 1. We consider the
nth iterated Brownian motion Wn(t) = Bn(Bn−1(· · · (B2(B1(t))) · · · )). Although the
sequence of processes (Wn)n≥1 does not converge in a functional sense, we prove that
the finite-dimensional marginals converge. As a consequence, we deduce that the ran-
dom occupation measures of Wn converge to a random probability measure μ∞. We
then prove that μ∞ almost surely has a continuous density which should be thought
of as the local time process of the infinite iteration W∞ of independent Brownian
motions. We also prove that the collection of random variables (W∞(t), t ∈ R \ {0})
is exchangeable with directing measure μ∞.
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measure · Exchangeability · Weak convergence · Local time ·
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1 Introduction

Let B+ = (B+(t), t ≥ 0) and B− = (B−(t), t ≥ 0) be independent standard one-
dimensional Brownian motions starting from 0. The process B(t) := B+(t) if t ≥ 0
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Fig. 1 First, second, and third iterations of Brownian motions

and B(t) := B−(−t) if t ≤ 0 is called a two-sided Brownian motion. In this paper
we study the iterations of independent (two-sided) Brownian motions. Formally, let
B1,B2, . . . be a sequence of independent two-sided Brownian motions and, for every
n ≥ 1 and every t ∈ R, set

Wn(t) := Bn

(
Bn−1

(· · · (B2
(
B1(t)

)) · · · )).
Burdzy [5] studied sample path properties of the random function t �→ W2(t) and
coined the terminology of (second) “iterated Brownian motion” for this object. A mo-
tivation for this study is that iterated Brownian motion can be used to construct a so-
lution to the fourth-order PDE ∂u/∂t = 1

8∂4u/∂x4; see [7]. This model has triggered
a lot of work, see [3–6, 12] and the references therein.

Another motivation is that the process Wn is not a semimartingale (unless n = 1).
Indeed, for n = 2, a simple calculation shows that the quadratic variation of W2 =
B2 �B1 does not exist, but its quartic variation does. Similarly the 2n-variation of Wn

is finite for n ≥ 1. Hence, as n increases, the process Wn becomes wilder and wilder.
Also, Wn is self-similar with index 2−n, i.e.,

(
Wn(αt), t ∈ R

) (d)= (
α2−n

Wn(t), t ∈ R
)

for all α > 0. See Fig. 1 for a comparison of sample paths of Wn, n = 1,2,3. All
these reasons make one suspect that convergence of the laws of the Wns in a “nice”
function space (e.g., the space of continuous functions) is impossible (see Remark 1).

However, following the principle of Berman saying that wild functions must have
smooth local times (see the nice survey [8]), we prove that the occupation measures
μn of Wn over [0,1] converge in distribution to a random measure μ∞ which can be
interpreted as the occupation measure of the infinite iteration “W∞”. More precisely,
let μn be the random probability measure defined by

∫

R

dμn f =
∫ 1

0
dt f

(
Wn(t)

)
(1)

for every Borel-measurable function f : R → R+. Our main result is a limit theorem
for the sequence (μn)n≥1. Restricting the integration to the unit interval is convenient
and poses no loss of generality due to the self-similarity property of Wn.

Let M be the set of all positive Radon measures on R. Although we focus on the
real line, the interested reader should consult [9] for the general theory of random
measures. Endow M with the topology T of vague convergence, that is, the weakest
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topology which makes the mappings

μ ∈ M �→ μf :=
∫

R

dμf, f ∈ CK,

continuous. (Here, CK is the set of continuous functions f : R → R with compact
support.) A random measure is a random element of the space (M, T ), viewed as a
measurable space with σ -algebra generated by the sets in T . A sequence λ1, λ2, . . . of
random measures converges in distribution to a random measure λ if for any bounded
continuous mapping F : (M, T ) → R, we have E[F(λi)] → E[F(λ)] as i → ∞.
We write

λn
(d)−→ λ,

to denote this notion. Convergence of λn to λ in distribution is equivalent to λnf
(d)−→

λf for any continuous f ∈ CK (see Theorem 4.2 in [9]). The latter convergence is
convergence in distribution of real-valued random variables.

Theorem 1 There exists a random measure μ∞ such that μn
(d)−→ μ∞. Moreover,

μ∞(R) = 1 a.s. The random probability measure μ∞ almost surely admits a den-
sity (La)a∈R with respect to the Lebesgue measure such that a �→ La has compact
support and is Hölder continuous with exponent 1/2 − ε for every ε > 0.

We can think of μ∞ as the occupation measure of the infinite iteration of i.i.d.
Brownian motions. Thus, the random function (La)a∈R must be thought of as the lo-
cal time of this infinite iteration. The convergence of the last theorem will be obtained
by proving convergence of finite-dimensional marginals of the iterated Brownian mo-
tions, namely:

Theorem 2 For any integer p ≥ 1, there exists a random vector (Xi)1≤i≤p such that
for any pairwise distinct nonzero real numbers x1, x2, . . . , xp , we have the following
convergence in distribution:

(
Wn(xi)

)
1≤i≤p

(d)−−−→
n→∞ (Xi)1≤i≤p. (2)

The random variables X1, . . . ,Xp and the differences Xi − Xj , i 	= j , have all iden-
tical distribution which is that of a “signed exponential” with parameter 2, i.e., a
distribution with density e−2|x|, x ∈ R.

The case p = 1 has already been noticed in the Physics literature [15] in the context
of infinite iteration of i.i.d. random walks. We are unfortunately unable to give an
explicit formula for the distribution of (X1, . . . ,Xp) when p ≥ 2; see Sect. 4 for
a discussion and simulations of this intriguing probability distribution. It is quite
interesting to observe that the marginals and differences have all the same distribution
but are, of course, dependent. In a certain sense, the infinite iteration is both self-
similar at all scales and long-range dependent.
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The paper is organized as follows. The second section is devoted to the proof of
Theorem 2, which is the cornerstone in the proof of Theorem 1. We then turn to
the study of occupation measures in Sect. 3. The last section presents some open
questions and comments.

2 Finite-Dimensional Marginals

In this section, we prove Theorem 2. The convergence of one-dimensional marginal
is a special case because we can explicitly give its limiting distribution, which will
be of great use throughout this paper. In the general case, the convergence of finite-
dimensional marginals comes from ergodic property of random iterations of indepen-
dent Brownian motions.

2.1 One-Dimensional Marginals

Let R
∗ := R \ {0}. For λ > 0, we denote by ±E (λ) a signed exponential distribution

with parameter λ, i.e., one which has density proportional to e−λ|x|, x ∈ R.

Proposition 3 For any t ∈ R
∗, we have the following convergence in distribution:

Wn(t)
(d)−−−→

n→∞ ±E (2). (3)

Remark 1 Proposition 3 already implies that the sequence of processes (Wn) is not
tight for the topology of uniform convergence on compact intervals. Indeed, if this
were the case, and since Wn(0) = 0, we would have that supn≥1 P(Wn(ε) > η) → 0
as ε → 0 for every η > 0, and this contradicts Proposition 3.

Proof By standard properties of Gaussian variables we have the following chain of
equalities in distribution:

Wn(t) = Bn

(· · · (B3
(
B2

(
B1(t)

))) · · · )

(d)= Bn

(· · · (B3
(
B2

(√|t |B1(1)
))) · · · )

(d)= Bn

(· · · (B3
(|t |1/4

√∣∣B1(1)
∣∣B2(1)

)) · · · )

(d)= ±t2−n
n−1∏

i=0

|Ni |2−i

,

where Ni are i.i.d. standard normal variables, and ± is an independent fair ran-
dom sign. It is then easy to see that the absolute value of the right-hand side of
the last display actually converges almost surely as n → ∞. Indeed, the series
of P(|log(|Ni |2−i

)| > i−2) is summable, and an application of the Borel–Cantelli
lemma proves the claim. Thus, if we set

X := lim
n→∞

n−1∏

i=0

|Ni |2−i

a.s.,
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we have the convergence Wn(t) → ±X in distribution as n → ∞, where ± is a fair
random sign independent of X . Notice that the limit does not depend on t as long
as t 	= 0. To identify the limit distribution, we note that X satisfies the following
recursive distributional equation:

X (d)= ∣∣N (0, X )
∣∣ (d)= √

X · |N |, (E)

where N is a normal variable independent of X . Iterating this equation and applying
the same arguments as above, it is easy to see that it admits a unique fixed point
as long as X > 0 almost surely. Guided by the result of [15], we verify that the
exponential variable E2 of density 2e−2x1x>0 also satisfies (E). One way to see this
is to identify moments. Indeed, recall that for every α > 0, we have

E
[|N |α] = 2α/2 �(

p+1
2 )√
π

, E
[

E α
2

] = 2−α�(α + 1),

where � is the standard Gamma function. Easy manipulations with the � function
then imply that E[|N |α]E[E α/2

2 ] = E[E α
2 ] for every α ≥ 0. Since these variables

are determined by their moments, we deduce that E2 = √
E2|N | in distribution as

desired. �

2.2 General Case

The goal of this section is to prove Theorem 2 in the case p ≥ 2. The convergence
(2) will be achieved by applying arguments from the theory of Harris chains. The
idea is to consider the random transformation which associates with any p points
x1, . . . , xp ∈ R the images B(x1), . . . ,B(xp) of these p points under a two-sided
Brownian motion B and to show that independent applications of this map possess
an ergodic property. See Fig. 2. That is, for any initial state (x1, . . . , xp), the distri-
bution of (Wn(x1), . . . ,Wn(xp)) converges weakly to a unique invariant probability
measure.

Let p ≥ 2. Denote by Rp the set of p-uplets (x1, . . . , xp) of pairwise distinct
nonzero real numbers. Note that if x = (x1, . . . , xp) ∈ Rp , then its image B(x) :=
(B(x1), . . . ,B(xp)) under a two-sided Brownian motion B almost surely belongs to
Rp .

Proposition 4 For any p ≥ 2, there is a unique probability measure νp on Rp such
that if (X1, . . . ,Xp) is distributed according to νp and if B is an independent two-
sided Brownian motion, then we have the equality in distribution

(
B(Xi)

)
1≤i≤p

(d)= (Xi)1≤i≤p. (4)

Furthermore, for any x = (x1, . . . , xp) ∈ Rp , we have the following convergence in
distribution:

(
Wn(xi)

)
1≤i≤p

(d)−−−→
n→∞ (Xi)1≤i≤p.
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Fig. 2 A 6-uplet and its image after applying an independent Brownian motion

Notice that this argument does not give an explicit expression for the stationary prob-
ability measures νp but characterizes them uniquely by (4). Let p ≥ 2 be a fixed
integer. Fix also a p-uplet x = (x1, . . . , xp) ∈ Rp . For every n ≥ 1, we set

Wn := (
Wn(x1), . . . ,Wn(xp)

)
.

Thus, the process (Wn)n≥0 is a Markov chain with state space Rp , starting from
W0 := x, with transition probability kernel given by

P(y;A) = P
[(

B(y1), . . . ,B(yp)
) ∈ A

]

for any y ∈ Rp and A ⊂ Rp , where B is a two-sided Brownian motion. We de-
note by Ex[·] the expectation of this chain started from x ∈ Rp . Since we restricted
ourselves to Rp , the chain (Wn) is easily seen to be irreducible with respect to the
p-dimensional Lebesgue measure on Rp and aperiodic. We will show that the chain
is in fact positive Harris recurrent, which will imply that it admits a unique invariant
probability measure, and Proposition 4 will directly follow from it, see [13, Theo-
rem 13.0.1]. The key to prove this is to consider the following sets:

Definition 1 Fix M > 1 a (large) real number. We say that a p-uplet x =
(x1, . . . , xp) ∈ Rp is M-sparse if we have

M−1 ≤ sup
1≤i≤p

|xi | ≤ M and min
1≤i 	=j≤p

|xi − xj | ≥ M−1.

The set of all M-sparse p-uplets in Rp is denoted by SM .

The basic observation is that if x = (x1, . . . , xp) and y = (y1, . . . , yp) are two M-
sparse p-uplets and if B is a two-sided Brownian motion, then the two random p-
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uplets (B(x1), . . . ,B(xp)) and (B(y1), . . . ,B(yp)) are mutually absolutely contin-
uous with Radon–Nikodým derivative bounded from below by a positive constant
cp,M depending on M and p only. The reason is that the ratio of the two densi-
ties f (x1, . . . , xp)/f (y1, . . . , yp) is a continuous function on the compact set SM .
In other words, there exist two (dependent) Brownian motions B and B̃ such that
B(x1) = B̃(y1), . . . ,B(xp) = B̃(yp) with probability at least cp,M . Put it otherwise,
if we fix x ∈ SM , then

P(x,A) ≥ cp,MP(y,A)

for all y ∈ SM and all measurable A ⊂ Rp . Thus, Ney’s minorization condition holds,
and, therefore, the set SM is a petite set in the sense of [13, Chap. 5].

Proof of Proposition 4 In order to prove that (Wn) is positive Harris recurrent, we
will show that, for some M > 0, the expected return time to the petite set SM by the
Markov chain (Wn) started from x is bounded above by a finite constant, uniformly
over all x ∈ SM .

The technical tool that we use here is the so-called drift condition, see [13], for
a Lyapunov or “potential” function V : Rp → R+. It is required that V be unbounded
on Rp . The drift of such a function is defined by

DV (x) := PV (x) − V (x) = Ex
[
V (W1)

] − V (x), x ∈ Rp.

Thus, D is the generator of the Markov chain. We will show that there exists a Lya-
punov function V such that, for some 0 < a,b < ∞,

DV (x) ≤ −a + b1x∈SM
(5)

for every x ∈ Rp . More precisely, we show that the preceding condition is satisfied
for the function V defined by

V (x1, . . . , xp) := max
1≤i≤p

|xi | +
∑

0≤i<j≤p

|xi − xj |−1/2

and for some a, b,M > 0. In the last display, we use the notation x0 := 0 to avoid
extra terms in the definition of V . It is convenient to consider the terms U(x) :=
max1≤i≤p |xi | and G(x) := ∑

0≤i<j≤p |xi − xj |−1/2 comprising V separately. For
any λ > 0,

PU(x) = Ex
[
U(W1)

] = E
[

max
1≤i≤p

∣∣B(xi)
∣∣
]

= √
λE

[
max

1≤i≤p

∣∣B(xi/λ)
∣∣
]
.

Letting λ = U(x), we thus have

PU(x) ≤ C1

√
U(x),

where C1 = E[max{|B(t)| : −1 ≤ t ≤ 1}]. For the other term, we have, with N a
standard normal variable,

PG(x) = Ex
[
G(W1)

] =
∑

0≤i<j≤p

E
[∣∣B(xi) − B(xj )

∣∣−1/2]
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=
∑

0≤i<j≤p

|xi − xj |−1/4E
[|N |−1/2] ≤ C2

√
G(x),

where C2 = pE[|N |−1/2]. Putting the terms together, we find

PV (x) = PU(x) + PG(x) ≤ C1

√
U(x) + C2

√
G(x) ≤ C3

√
U(x) + G(x) = √

V (x),

where C3 = 2 max(C1,C2). Thus, for all x ∈ Rp ,

DV (x) ≤ C3

√
V (x) − V (x).

If x ∈ SM , then V (x) ≤ M + (p + 1)2
√

M < ∞. If x 	∈ SM , then |xi | > M for some i

or |xi − xj | < 1/M for some 0 ≤ i < j ≤ p. In the first instance, V (x) > M ; in the
second instance, V (x) >

√
M . So, for M > 1, we have V (x) >

√
M for all x 	∈ SM .

Let M = max(16C4
3 ,1). Then for x 	∈ SM , we have

√
V (x) > 2C3, implying that

DV (x) < −C3
√

V (x) < −C2M
1/4. Thus, (5) holds. Theorem 13.0.1 in [13] now

applies, showing positive Harris recurrence. This finishes the proof of the proposi-
tion. �

Remark 2 The proof actually shows that there are constants C4,C5 > 0 such that

DV (x) ≤ −C4

√
V (x)

when V (x) > C5, enabling one to establish a rate of convergence to the stationary
distribution. We shall not pursue this further herein.

2.3 Properties of the νps

We can think of νp as a measure on the product space R
p (by letting it have mass

0 outside Rp). The probability measures (νp)p≥1 are consistent. This follows from
the fact that νp is the limit in distribution of (Wn(x1), . . . ,Wn(xp)), whereas νp+1
is the limit of (Wn(x1), . . . ,Wn(xp),Wn(xp+1)), for any (x1, . . . , xp, xp+1) ∈ Rp .
Therefore, νp is the projection of νp+1 on the first p coordinates. By Kolmogorov’s
extension theorem, there is a probability measure ν on R

N such that νp is obtained
from ν by projecting on the first p coordinates. The family ((νp)p≥1, ν) has some
further properties.

2.3.1 Exchangeability

The last statement of Proposition 4 actually shows that ν is exchangeable, that is,
invariant under permutations of finitely many coordinates. Let (X1,X2, . . .) be a ran-
dom element of R

N with law ν. By the classical de Finetti/Ryll–Nardzewski/Hewitt–
Savage theorem (Theorem 11.10 in [11]) we know that there exists a random ele-
ment μ∞ of M (that is, μ∞ is a random probability measure) such that the law of
(X1,X2, . . .) conditionally on μ∞ is a product measure (the law of i.i.d. random vari-
ables). The random measure μ∞ will be identified and interpreted in the next section
as the occupation measure of the infinitely iterated Brownian motion.
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2.3.2 Stationarity of the Increments

The family of measures (νp)p≥1 also possesses another property which can be de-
scribed as stationarity of the increments.

Proposition 5 Let p ≥ 2, and let (X1,X2, . . . ,Xp) be distributed according to νp .
Then for every 1 ≤ � ≤ p, we have

(X1 − X�, . . . ,X�−1 − X�,X�+1 − X�, . . . ,Xp − X�)
(d)= νp−1.

Proof Let (x1, x2, . . . , xp) ∈ Rp . It is easy to prove by induction on n ≥ 1 and
using elementary manipulation of the Gaussian distribution that the random vector
(Wn(xi) − Wn(x�))i 	=� has the same distribution as the vector (Wn(xi − x�))i 	=�. No-
tice that the vector (xi − x�)i 	=� ∈ Rp−1, thus we can apply Proposition 4, and this
finishes the proof of the proposition. �

3 The Occupation Measure

3.1 Existence of μ∞

Recall the definition of the random measures μn given by formula (1) in the Intro-
duction and the notion of convergence in distribution of random elements of (M, T ).
With Theorem 2 in our hands, it is now easy to prove convergence in distribution of
the random measures μn. We first need a lemma, characterizing convergence in dis-
tribution of random elements of (M, T ), tailor-made for our case. The lemma can be
of independent interest.

Lemma 6 Let λ1, λ2, . . . be random probability measures on R. The following are
equivalent:

(i) The sequence λn converges in distribution to some random probability measure.
(ii) For each n ≥ 1, and conditionally on λn, let Xn

1 ,Xn
2 , . . . be i.i.d. real-valued

random variables each with (conditional) law λn:

P
(
Xn

1 ∈ A1, . . . ,X
n
p ∈ Ap | λn

) = λn(A1) · · ·λn(Ap) a.s.

for all p ≥ 1 and Borel sets A1, . . . ,Ap . The random vector (Xn
1 , . . . ,Xn

p) con-
verges in distribution as n → ∞ to some probability measure on R

p .

Proof The implication (i) ⇒ (ii) is an easy consequence of [9, Theorem 4.2]. For
the other direction, fix f : R → R, f ∈ CK . We will show that the random variable
λnf = ∫

R
f dλn converges in distribution as n → ∞. Consider the random probabil-

ity measure

ξ
(p)
n := p−1

p∑

i=1

δXn
i
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(i.e., the empirical distribution of (Xn
1 , . . . ,Xn

p)). We compare λnf to ξ
(p)
n f =

p−1 ∑p

i=1 f (Xn
i ). We have

P
(∣∣λnf − ξ

(p)
n f

∣∣ ≥ ε
) = E

[
P

(∣∣λnf − ξ
(p)
n f

∣∣ ≥ ε | λn

)] ≤ ‖f ‖2∞
ε2p

by Chebyshev’s inequality. On the other hand, ξ
(p)
n f converges in distribution as

n → ∞. Hence, λnf converges in distribution, and thus λn converges in distri-
bution to some random measure λ. It remains to prove that λ almost surely has
mass one. Since Xn

1 converges in distribution, it follows that the sequence of ran-
dom variables {Xn

1 }n≥1 is tight. Thus, for every ε > 0, there exists M > 0 such that
P(|X1

n| > M) ≤ ε for every n ≥ 1. Conditionally on λn, we have P(|Xn
1 | > M | λn) =

1 − λn([−M,M]). Taking expectation, we deduce that E[λn([−M,M])] ≥ 1 − ε for
every n ≥ 1. This is sufficient to apply Theorem 4.9 in [10] and deduce that λ is
almost surely a random probability measure. �

Let us go back to our setting and show that the occupation measures μn con-
verge to a random probability measure μ∞. Let p ≥ 1, and, conditionally on μn, let
Xn

1 , . . . ,Xn
p be i.i.d. random variables with common distribution μn. We show that

(Xn
1 , . . . ,Xn

p) converges (unconditionally) to the random vector (X1, . . . ,Xp) of law
νp identified in Proposition 4. Indeed, by the definition of μn, for any Borel bounded
function f : R

p → R we have, by Fubini’s theorem,

E
[
f

(
Xn

1 , . . . ,Xn
p

)] = E

[∫

[0,1]p
du1 · · ·dup f

(
Wn(u1), . . . ,Wn(up)

)]

=
∫

[0,1]p
du1 · · ·dup E

[
f

(
Wn(u1), . . . ,Wn(up)

)]
.

The last integral converges to E[f (X1, . . . ,Xp)] as n → ∞ because of Theorem 2
and dominated convergence. Applying Lemma 6, we get the existence of a random
probability measure μ∞ such that μn → μ∞ in distribution as n → ∞.

3.2 Support of μ∞

Proposition 7 Almost surely, the random probability measure μ∞ has a bounded
support.

In order to prove the last proposition, we use a very general fact:

Lemma 8 Let λn be a sequence of random probability measures converging in dis-
tribution to a random probability measure λ∞. Suppose that the support of λn is
contained in [An,Bn] and that the sequences of random variables (An) and (Bn) are
tight. Then λ∞ has a compact support almost surely.

Proof Let us argue by contradiction and suppose that λ∞ has probability at least
ε > 0 of having an unbounded support. By the assumption made on An and Bn
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there exists M > 0 such that P(|An| ≥ M) ≤ ε/10 and P(|Bn| ≥ M) ≤ ε/10 for
every n ≥ 1. For the M > 0 chosen above, there exists δ > 0 such that we have
λ∞(] − M,M[c) > δ with probability at least ε/2. Now choose p ≥ δ−1. Suppose
that, conditionally on λ∞, the random variables X∞

1 , . . . ,X∞
p are i.i.d. with common

law λ∞. We then have

P
(

sup
1≤i≤p

∣∣X∞
i

∣∣ ≥ M
)

≥ E
[
P

(
sup

1≤i≤p

∣∣X∞
i

∣∣ ≥ M
∣∣ λ∞

(]−M,M[c) > δ
)

1λ∞(]−M,M[c)>δ

]

≥ ε

2

(
1 − (1 − δ)p

) ≥ ε
(
1 − e−1)/2. (6)

On the other hand, if Xn
1 , . . . ,Xn

p are i.i.d., conditionally on λn, we have

P
(

sup
1≤i≤p

∣
∣Xn

i

∣
∣ ≥ M

)
≤ P

(|An| ≥ M
) + P

(|Bn| ≥ M
) ≤ ε/5. (7)

Since for p fixed we have (Xn
i )1≤i≤p → (X∞

i )1≤i≤p in distribution as n → ∞, com-
paring (6) and (7) leads to a contradiction. �

We further establish a result on the limit of the oscillation of Wn on an interval
as n → ∞. Recall, that the oscillation of a function f on an interval J is defined by
osc(f ;J ) := sups,t∈J |f (t) − f (s)|, and let, for t > 0,

Δn(t) := osc
(
Wn; [0, t]).

Lemma 9 Let D := osc(B; [0,1]) be the oscillation of a Brownian motion on a unit
interval, and let D0,D1,D2, . . . be i.i.d. copies of D. Then, for all t > 0,

Δn(t)
(d)−−−→

n→∞

∞∏

i=0

D2−i

i .

Proof Let

In(t) := inf
x∈[0,t]Wn(x), Sn(t) := sup

x∈[0,t]
Wn(x).

Then Δn(t) = Sn(t) − In(t), and

Δn+1(t) = sup
0≤x≤t

Bn+1
(
Wn(x)

) − inf
0≤x≤t

Bn+1
(
Wn(x)

)

= sup
In(t)≤u≤Sn(t)

Bn+1(u) − inf
In(t)≤u≤Sn(t)

Bn+1(u)

= osc
(
Bn+1;

[
In(t), Sn(t)

])

(d)= osc
(
Bn+1;

[
0,Δn(t)

])



J Theor Probab

(d)= √
Δn(t)osc

(
Bn+1; [0,1]).

Thus, iterating this equation, we get in the spirit of the proof of Proposition 3 the
following equality in distribution:

Δn(t)
(d)= t2−n

n∏

i=1

D2−(i−1)

i .

An argument similar to the one used in the proof of Proposition 3 shows that the
right-hand side of the last display actually converges almost surely as n → ∞ to

the infinite product
∏∞

i=0 D2−i

i . Hence, Δn(t) converges in distribution to the same
random variable. �

Remark 3 Roughly speaking, the oscillation of the infinitely iterated Brownian mo-
tion is the same, in distribution, over any interval of any length.

Proof of Proposition 7 By Lemma 9, Δn(1) converges in distribution, and it is tight.
Thus, the support of μn is contained in a compact interval whose endpoints are tight.
Applying Lemma 8, we deduce that, almost surely, μ∞ has a bounded support, as
required. �

3.3 Density of μ∞

This section is devoted to the analysis of the properties of the density of μ∞. We will
proceed in two steps. First, using standard technique of Fourier analysis for occupa-
tion densities (see, e.g., [2]), we will prove that μ∞ almost surely has a density which
is in L

2. At the same time, we obtain some estimates about this Fourier transform.
We will then use a very general result of Pitt [14] on local times to prove that this
density is in fact continuous and even Hölder continuous with exponent 1/2 − ε for
every ε > 0.

3.3.1 Harmonic Analysis of μ∞

For ξ ∈ R, let

Φ(ξ) :=
∫

R

dμ∞(x) exp(iξx)

be the Fourier transform of the random probability measure μ∞.

Proposition 10 For any ξ ∈ R, we have

E
[∣∣Φ(ξ)

∣∣2] = 4

4 + ξ2
. (8)

Proof By the definition of the Fourier transform Φ(ξ), we have

E
[∣∣Φ(ξ)

∣∣2] = E

[∫

R2
dμ∞(x)dμ∞(y) eiξ(x−y)

]
.
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By the convergences already established we have

E

[∫

R2
dμ∞(x)dμ∞(y) eiξ(x−y)

]
= lim

n→∞E
[
exp

(
iξ

(
Wn(U1) − Wn(U2)

))]
,

where U1,U2 are two independent random variables uniformly distributed over [0,1]
and also independent of the sequence of Brownian motions B1,B2, . . .. By station-
arity of the increments (see the proof of Proposition 5), for any s, t ∈ R, we have
Wn(t) − Wn(s) = Wn(t − s) in distribution, and thus,

E

[∫

R2
dμ∞(x)dμ∞(y) eiξ(x−y)

]
= lim

n→∞E
[
exp

(
iξ

(
Wn(U1 − U2)

))]

= lim
n→∞

∫∫ 1

0
dudv E

[
exp

(
iξWn(u − v)

)]
.

Applying Proposition 3 and the dominated convergence theorem, we get that

E

[∫

R2
dμ∞(x)dμ∞(y) eiξ(x−y)

]
= E

[
exp

(
iξ

[±E (2)
])] = 4

4 + ξ2
.

�

In particular, applying Fubini’s theorem, we deduce from (8) that

E
[‖Φ‖2

2

] =
∫

R

(
4

4 + ξ2

)2

dξ < ∞

and thus that Φ ∈ L
2 almost surely. By standard results on Fourier transforms, this

implies that, almost surely, μ∞ has density (La)a∈R with respect to the Lebesgue
measure which is in L

2. Notice that estimates (8) in fact give us a bit more; namely,
for every 0 < s < 1/2, we have

‖Φ‖Hs :=
√∫

R

dξ
(
1 + ξ2

)s∣∣Φ(ξ)
∣
∣2

< ∞, a.s.

Applying the standard Sobolev inequality, we deduce that for every 0 < s < 1/2, we
have

‖L‖
L2/(1−2s) ≤ C‖Φ‖Hs ,

where C is a universal constant; see Theorem 1.38 in [1]. Since s can be arbitrarily
close to 1/2 and since L is itself a density (thus, L ∈ L

1 a.s.), we get that L ∈ L
q for

any 1 ≤ q < ∞ almost surely.

3.3.2 Continuity of the Density

The idea to prove the continuity of the density (La)a∈R is to apply once again a
Brownian motion “on top of μ∞” and to use the general theory developed in [14].
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Formally, if μ∞ has a density (La)a∈R (which is in every L
q,1 ≤ q < ∞), we define

the random measure μ̃∞ by

μ̃∞f :=
∫

dμ∞(x) f
(
B(x)

) =
∫

da La f
(
B(a)

)
,

where B is an independent two-sided Brownian motion. Clearly, we have

μ̃∞
(d)= μ∞

(equality in distribution). So it suffices to show that μ̃∞ has a continuous density.
This follows from the following lemma.

Lemma 11 Let g : R → R+ be the density of a probability measure supported on
a compact interval I ⊂ R such that g ∈ L

q for every 1 ≤ q < ∞. Let also B be a
two-sided Brownian motion and consider the occupation measure of B with respect
to the measure g(t)dt defined as follows:

μf =
∫

R

g(t)dt f
(
B(t)

)

for any Borel positive function f . Then the random measure μ almost surely has a
density which is locally Hölder continuous of exponent 1/2 − ε for any ε > 0.

Proof Let 0 < δ < 1 and choose q ≥ 1 such that (1 + δ)q∗ < 2, where q∗ is defined
by 1/q + 1/q∗ = 1. Applying Hölder’s inequality, we get that

sup
s∈I

∫

I

dt
g(t)√|t − s|1+δ

≤
(∫

I

dt
∣
∣g(t)

∣
∣q

)1/q

sup
s∈I

(∫

I

dt |t − s|−(1+δ)q∗/2
)1/q∗

< ∞.

We can thus apply Theorem 4 of [14] and get that μ has a continuous density L

over R which satisfies a local Hölder condition |L(x) − L(y)| ≤ K|x − y|δ′
for any

δ′ < δ/2. �

4 Comments

Occupation over Other Measures In this work we considered the occupation mea-
sures μn of Wn over the time interval [0,1], but the proofs apply in the more general
setting of occupation measures of Wn over any probability measure on R which is
not atomic. More precisely, if λ is a probability measure on R which has no atom, we
define the occupation of Wn over λ by

μ(λ)
n f :=

∫

R

λ(dt)f
(
Wn(t)

)

for any Borel f : R → R+. Then the random probability measures μ
(λ)
n converge to

μ∞ in distribution as well.
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Fig. 3 About 300000
independent samples of the
distribution ν2. Simulation
realized by Alexander Holroyd

Explicit Finite-Dimensional Marginals The consistent family distributions {νp,

p ≥ 1} introduced in Proposition 4 are the limiting distributions of the finite-
dimensional marginals of the Wns. They are characterized by (4). Although they arise
naturally in the study of iteration of Brownian motions, to the best of our knowledge,
they have not been investigated so far for p ≥ 2, and in particular no explicit formulas
are known for the density of νp , p ≥ 2.

In Fig. 3 many independent points have been sampled according to ν2. A clear
shape “sea star” emerges, and we conjecture that the level-lines of the density of ν2
would be dilatation of this unique shape. However, we do not have any candidate for
this density.

Exponential Distribution The distributional equation (E) of Sect. 2.1 seems to be a
new characterization of the exponential distribution. As such, it begs for a probabilis-
tic explanation. This is unknown to us.

Ray–Knight Theorem In the spirit of the famous Ray–Knight theorem, do we have
another way to describe the density of μ∞ as a diffusion process?

Reflected Brownian Motion It is possible to extend part of the previous work to
iterations of reflected Brownian motions. Namely, it is likely that Proposition 4 goes
through but Proposition 5 fails, and thus the analysis of the Fourier transform of the
limiting measure would be more challenging.

Fractional Brownian Motion Fractional Brownian motion generalizes Brownian
motion in that it is a Gaussian H -self-similar process with stationary increments,
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where 0 < H < 1. Again, it is likely that Proposition 4 goes through but the limit
is even harder to describe. Of course, this raises the following interesting question:
what kind of processes can be iterated ad libitum and result in some kind of limit?

Acknowledgements We are deeply indebted to Yuval Peres for insightful discussions.
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