Using Mathematics to Put Humans on Mars (or not)

Formulae and data

F-1 Engine parameters

- Engine mass (with fuel tank 1): $26,000 \mathrm{~kg}$
- Fuel mass: 432,000kg
- Exhaust velocity: $2.98 \mathrm{~km} / \mathrm{s}$

Astronomical data

- Mass of sun $M \approx 1.989 \times 10^{30} \mathrm{~kg}$
- Gravitational constant $G \approx 6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
- $\mu=G M \approx 1.327 \times 10^{20} \mathrm{~m}^{3} \mathrm{~s}^{-2}$ (This combination appears frequently.)
- Earth orbit radius (assuming circular) 1au (astronomical unit) $\approx 1.496 \times 10^{11} \mathrm{~m}$
- Earth year length: 365.25 days (not forgetting leap years!)
- Earth mean orbital speed: $29.78 \mathrm{~km} / \mathrm{s}$.
- Mars orbit radius (assuming circular) $1.52 \mathrm{au} \approx 2.27 \times 10^{11} \mathrm{~m}$.
- Mars year length: 687 days.

Simplified Tsiolkovsky rocket equation

$$
v=v_{e} \ln \left(\frac{m_{0}}{m}\right) \quad \text { or } \quad m_{0}=m \mathrm{e}^{v / v_{e}}
$$

- $v=$ rocket velocity now
- $v_{e}=$ exhaust velocity
- $m_{0}=$ initial mass (engine mass + fuel mass)
- $m=$ mass now

Specific orbital energy

$$
\varepsilon=\frac{v^{2}}{2}-\frac{\mu}{r}
$$

- $\vec{v}=$ planet velocity (so $v=|\vec{v}|=$ speed)
- $\vec{r}=$ vector from planet to sun (so $r=|\vec{r}|=$ distance)

[^0]
[^0]: ${ }^{1}$ rough estimate, based on 20% stage 1 of Saturn V

