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Polygons 
whose 
vertices lie 
on the
lattice points
(think of 
them as 
points with 
whole number 
coordinates)

What are the 
areas here?



a = number of lattice points INSIDE, not on edges
b = number of lattice points on the edges



What is the count of 
lattice points inside and 
on the edges of a p x q
rectangle? 

Note p, q are the 
lengths of the sides.

p

q

a = number of lattice points INSIDE, not on edges
b = number of lattice points on the edges
area of rectangle = pq and in terms of a, b is ??



What are the numbers 
of lattice points on and 
inside this triangle?
What about a right-
angled triangle as half of 
any p x q rectangle?

A, B for the rectangle
a, b for the triangle
d lattice points on the 
diagonal but not at ends
(i) A = 2a + d 
(ii) B = 2b – 2d – 2  
(iii) ½(A + ½B – 1) = 

a + ½b – 1  
and the area formula 
works here too!

p=8

q=4

a or A: lattice points INSIDE
b or B: lattice points on the edges
d: points on the diagonal not at the ends

d = 3



Similarly if the formula 
works for the whole shape 
and for one of the parts 
then it works for the other 
part.

𝑎1 , 𝑏1 𝑎2 , 𝑏2d

a, b the inside/edge numbers for the whole shape
𝑎 = 𝑎1 + 𝑎2 + 𝑑

𝑏 = 𝑏1 + 𝑏2 − 2𝑑 − 2
These give

𝑎 +
1

2
𝑏 − 1 = (𝑎1+

1

2
𝑏1 − 1) +(𝑎2 +

1

2
𝑏2 − 1)

and r.h.s. = sum of areas = total area.

𝑎1, 𝑎2 = lattice points inside
𝑏1, 𝑏2 = lattice points on the edges 
for the separate shapes

d points on common line, omitting 
endpoints.



In each case the triangle can be made from a rectangle by 
subtracting right-angled triangles and smaller rectangles, for 
which the formula is known to work.



Every area surrounded by a polygon can be made up of triangles so in fact the 
formula is always valid for any lattice polygon:
Area = number of lattice points inside + half number of lattice points on the 
edges minus 1



There are many ‘serious’ practical applications of Pick’s Theorem—chiefly to 
estimating areas of complicated shapes by placing them on a fine lattice and 
counting points, usually automatically.

Here is a small application to magic squares.

a

h

b c

d e f

g k

Let’s look at 3 x 3 magic squares.  I only require that
all rows, all columns and the two main diagonals add to 
the same sum, called s, and the entries are all positive 
whole numbers.

Can you show that 𝑒 =
1

3
𝑠 ?

I’ll write s = 3e.



4

h

5 c

d e f

g k

given s = 15 (so e = s/3 = 5) fill in the rest 
of the magic square.

a

h

b c

d e f

g k

Given a, b, e (hence the magic sum 3e), fill in 
the rest of the magic square in terms of a,b,e.



a b 3e – a – b

e4e – 2a – b 2a+b – 2e

a+b –e 2e – b 2e – a

Now, given only e, how many 
choices are there for 
positive whole numbers a, b
which make all the entries 
positive?

We can answer this question 
using Pick’s Theorem !

We need
e < a + b < 3e

2e < 2a + b < 4e

a < 2e

b < 2e

to make all the entries > 0.



e 2e 3e

e

2e

3e

4e

a

b

e < a + b < 3e

2e < 2a + b < 4e

a < 2e

b < 2e

(e, 2e)
So we are looking for all the 
lattice points inside (not on) 
this shaded parallelogram, that 
is points (a,b) with whole 
number coordinates.

How can we count this number of lattice points, that is the number 
of solutions of the 3x3 magic square when we are given just e? e12

We can represent the inequalities on a diagram:



e

2e

a

(e, 2e)

e 2e

b
Area = e x 2e = 2e²

Number of lattice points on the edges is
2(e + 1) + 2(e – 1) = 4e

So number of lattice points inside is given  by

Inside + ½(4e) – 1 = 2e²

so Number of magic squares = 2e² – 2e + 1

e.g. e = 2 gives the number of magic squares as 5.
Can you find them all? They are a bit boring!

It is much harder to determine the magic squares 
with all entries different!



a b

2

magic sum 3e = 3 x 2 = 6
There should be 2e² – 2e + 1 = 5 solutions. Can you 
find them?

All entries integers > 0, sum of every row, column 
and the two main diagonals = 3e = 6

What about e = 3? The magic sum is 9 and there are 13 solutions altogether. 
I don’t think there are any solutions with e = 3, nor with e = 4 which have all 
entries different. 

With e = 5, I believe there is exactly one solution with all entries different, 
up to the obvious symmetries. Can you find it? Are the entries exactly the 
numbers 1,2,...,9 in that case?

With e = 6, I believe that, of the 61 solutions, 3 distinct solutions (allowing 
for symmetries) have all entries different and one of these has entries 
which are nine consecutive whole numbers.


