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Can you imagine a world in which there are only a finite number of
numbers?... not simply a world with only a finite number of
numerals or number symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

but only a finite number of actual numbers.
Is that impossible?

My first mathematical experience was that numbers go on for ever.
Can you prove this?



I claim that we can do arithmetic (+,−,×,÷) with only a finite
number of numbers. Let’s start with counting and addition:
0
1
1 + 1
1 + 1 + 1
1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
. . .
This is an infinite list. Ordinary numbers go on for ever because
(1) we can continue to add 1’s, and
(2) when we do this, our numbers get bigger and bigger, so that

there are no repetitions in the list.
If we have only a finite number of numbers, there must be
repetitions.



Let’s invent a system with exactly ten numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

If arithmetic makes sense, then 9 + 1 must be one of our ten
numbers. I claim that 9 + 1 = 0, for if the answer were some
non-zero number, say 9 + 1 = 4, we could subtract 4 from both
sides, giving 5 + 1 = 0. So 6 = 0, contradicting the fact that we
started with ten distinct numbers. Thus

9 + 1 = 0.

Now, in ordinary arithmetic, tell me a pair of numbers that add up
to zero . . . another pair . . . This suggests that we have negative
numbers in our new arithmetic and that -1 = 9 and -9 = 1. Which
of our original ten numbers do you think -2 is? Which is -3? . . .
Can anyone suggest the answer to 6 + 7? . . . 3 + 8? . . . 9 - 3?
. . . 3 - 9?



Arithmetic mod 10
The number system we have invented is arithmetic modulo 10,
often abbreviated to arithmetic mod 10. You have been familiar
with it for a long time, for you have used it whenever you have
done sums such as

537 746
+ 468 - 359

In working out what to put in the units column, you were actually
doing 7 + 8 and 6 - 9 in arithmetic modulo 10. No doubt you
thought 7 + 8 = 15 in the first sum and 16 - 9 in the second one,
but in arithmetic mod 10, 10 = 0, so we can momentarily forget
10 in the first sum and introduce it to help in the second sum.
How do you think we do multiplication in this arithmetic?
. . . What about division?



Multiplication mod 10

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Here every number is a multiple of 7, so we can always divide by 7.
What numbers can we always divide by?
What numbers can we not always divide by?



Arithmetic mod m
For each integer m ≥ 2, there is a system of arithmetic mod m.
For certain values of m, division is possible by every number
(except 0). I would like to find these values of m, for the
corresponding number systems are particularly pleasant and useful.

What values of m have this pleasant property? Think about this
now.



Let n be an integer, in the range 0 < n < m, whose multiples (mod
m) are not all different. Then there are integers x , y such that

0 ≤ y < x < m

and nx ≡ ny (mod m)

So n(x − y) ≡ 0 (mod m) and 0 < x − y < m.

There must be a smallest integer s such that

ns ≡ 0 (mod m) and 0 < s < m. (1)

Moreover, s 6= 1, for n (which is less than m) cannot be divisible
by m. So 1 < s < m. Let q be the quotient and r the remainder
when m is divided by s. Then m = qs + r and 0 ≤ r < s. Thus
qs + r ≡ 0 (mod m). Multiplying by n and using (1) gives nr ≡ 0
(mod m). Now r cannot be positive (by our definition of s), so
r = 0 and m = qs, which is not prime. Obviously, if m is not
prime, there is a number whose multiples are not all different.
Hence division in arithmetic mod m by every number (6= 0) is
possible if and only if m is prime.



Fields
When p is any prime number, all four operations (+, -, × and ÷)
are always possible (except division by zero) within the system of
arithmetic mod p. Such a system of numbers is called a field. The
integers (+ve & -ve) do not form a field because, although +, -
and × can always be done, division is not always possible (e.g.
2÷ 3 is not an integer). We have to extend the integers to include
all +ve and -ve fractions in order to get a field, You are already
familiar with this field, called the field of rational numbers, and the
much larger field of real numbers (corresponding to points on a
number line) that includes such numbers as

√
2 and π.



Addition and multiplication tables in arithmetic mod 5

+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 2 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that 22 = 32 = 4 = −1 in this arithmetic, so -1 has two
square roots.
3 has no square root in this field of 5 numbers. If we wish, we can
add
√

3 to this field and construct a field of 25 numbers:

0
√

3 2
√

3 3
√

3 4
√

3

1 1 +
√

3 1 + 2
√

3 1 + 3
√

3 1 + 4
√

3

2 2 +
√

3 2 + 2
√

3 2 + 3
√

3 2 + 4
√

3

3 3 +
√

3 3 + 2
√

3 3 + 3
√

3 3 + 4
√

3

4 4 +
√

3 4 + 2
√

3 4 + 3
√

3 4 + 4
√

3



Finite fields
It can be shown that here is a finite field with exactly n numbers if
and only if n is a power of a prime (e.g. n = 52). For each such
value of n there is essentially one field with this number of
elements. These fields are often called Galois fields after a young
French mathematician Évariste Galois (1811-1832) who was killed
in a duel.



Problem (1725)

Take all the Aces, Kings, Queens and Jacks from a pack of cards.
Can you arrange them in a 4× 4 array so that no suit occurs twice
in any row or column and, similarly, that no single kind of a card,
such as Kings, occurs twice in any row or column?



Leonhard Euler (1707 - 1783)

Leonhard Euler 

 

Portrait by Jakob Emanuel Handmann (1753) 

 



Some of Euler’s mathematics

Euler could calculate “just as men breathe, as eagles sustain
themselves in the air”.
The seven bridges of Königsberg.
Polyhedra: V − E + F = 2.
The most beautiful formula in mathematics: e iπ + 1 = 0.
Latin squares . . .



 



 



Euler’s problem (1779)

36 officers of 6 different ranks and taken from 6 different
regiments, one of each rank in each regiment, are to be arranged,
if possible, in a solid 6× 6 formation, so that each row and each
column contains one and only one officer of each rank and one and
only one officer from each regiment.



Latin squares

An n× n array of n symbols is called a Latin square if each symbol
appears exactly once in each row and exactly once in each column.
For example

A B C
B C A
C A B

is a Latin square (Euler’s name, because he used the Latin
alphabet). He was particularly interested in what he called
Graeco-Latin squares. Here is an example:

Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

Here the Greek letters also form a Latin square, so we have two
Latin squares superimposed.
Latin squares turn up in some surprising contexts.



 

 

 



 

 

 



 

 



Orthogonal Latin squares

Look again at our example of one of Euler’s Graeco-Latin squares:

Aα Bβ Cγ
Bγ Cα Aβ
Cβ Aγ Bα

Here the Greek letters also form a Latin square, so we have two
Latin squares superimposed. They are superimposed in a
particularly neat way, because each combination of a Latin letter
and a Greek letter occurs exactly one. When this happens, the two
Latin squares are said to be orthogonal. The squares need not
actually be superimposed to be orthogonal. They might be shown
separately:

A B C α β γ
B C A γ α β
C A B β γ α



A Latin square in the design of a French experiment in 1788

Cretté de Palluel did an experiment on feeding 4 types of food to 4
different breeds of sheep for 4 different lengths of time. He took 4
sheep of each breed and fed them for the number of months shown
in the table, weighing each sheep before and after the experiment.

potatoes turnips beets corn

Ile de France 1 2 3 4
Beauce 4 1 2 3

Champagne 3 4 1 2
Picardy 2 3 4 1

Even though only 16 sheep were used, not 64, the experiment could
have tested duration of feed against diet or duration of feed against
breed in addition to how it was used - for diet against breeds.



 

 

Sir Ronald Fisher 

 



Figure: The memorial window to
R.A.Fisher in the hall of Gonville
and Caius College, Cambridge, UK.
The Latin square of colours
appeared on the dustcover of
Fisher’s book “The design of
experiments”. This photograph by
Derek Ingram is reproduced by kind
permission of his executors.



How orthogonal squares are used in experiments

Suppose we wished to compare the yields from 4 different varieties
of wheat (A, B, C, D) when they are treated with 4 different types
of fertilizer (α, β, γ, δ). We could divide a field into an array of
4× 4 = 16 plots. and plant it according to the square:

Aα Bβ Cγ Dδ
Dγ Cδ Bα Aβ
Bδ Aγ Dβ Cα
Cβ Dα Aδ Bγ

We could even bring include a third variable and compare 4 types
of insecticide (0, 1, 2, 3), using them on the plots as shown

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0



How to construct mutually orthogonal n × n Latin squares
(when n is a power of a prime)

In this case there is a finite field with exactly n numbers. We can
construct n − 1 mutually orthogonal squares as follows. Here we
take n = 5 and construct 4 squares. Start with the multiplication
table for arithmetic mod 5.

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Take each of its last 4 columns as the first column of one of our
orthogonal squares. Keep the first row as 0, 1, 2, 3, 4 in each case.
At this stage we have numbers in each first row and in each first
column.



0 1 2 3 4 0 1 2 3 4
1 2
2 4
3 1
4 3

0 1 2 3 4 0 1 2 3 4
3 4
1 3
4 2
2 1

To complete each square we add border numbers mod 5.



0 1 2 3 4 0 1 2 3 4
1 2 3 4 0 2 3 4 0 1
2 3 4 0 1 4 0 1 2 3
3 4 0 1 2 1 2 3 4 0
4 0 1 2 3 3 4 0 1 2

0 1 2 3 4 0 1 2 3 4
3 4 0 1 2 4 0 1 2 3
1 2 3 4 0 3 4 0 1 2
4 0 1 2 3 2 3 4 0 1
2 3 4 0 1 1 2 3 4 0



Why each square is Latin

As an example, take our third square. It is

3× 0 3× 0 + 1 3× 0 + 2 3× 0 + 3 3× 0 + 4
3× 1 3× 1 + 1 3× 1 + 2 3× 1 + 3 3× 1 + 4
3× 2 3× 2 + 1 3× 2 + 2 3× 2 + 3 3× 2 + 4
3× 3 3× 3 + 1 3× 3 + 2 3× 3 + 3 3× 4 + 4
3× 4 3× 4 + 1 3× 4 + 2 3× 4 + 3 3× 4 + 4

The numbers in each row are different. (Remember we are working
mod 5.) The numbers in the 3 times table are all different because
arithmetic mod 5 is a field, so the numbers in each column are
different. Hence there is one copy of each number in each row and
in each column, so our number square is Latin.



Why, for example, the 1st and 4th Latin squares are orthogonal

Suppose that the same pair of numbers (one from the 1st square,
one from the 4th) occur together in position (row r1, column c1)
and in (row r2, column c2) when the squares are superimposed.
Then

1× r1 + c1 = 1× r2 + c2

and 4× r1 + c1 = 4× r2 + c2

Subtracting, (4− 1)r1 = (4− 1)r2

Now arithmetic mod 5 is a field in which 4− 1 6= 0, so we can
divide by 4 - 1, getting r1 = r2. Substituting in an earlier equation,
c1 = c2. Hence the 1st and 4th Latin squares are orthogonal.
Similarly every pair of these 4 squares are orthogonal.



What is known
For each integer n ≥ 2, there are no more than n − 1 mutually
orthogonal Latin squares.

When n is a power of a prime number, there is a finite field of n
numbers and a set of n− 1 orthogonal squares can be constructed.

When n = 6, there is no pair of orthogonal squares. (Euler’s
officers problem.)

For each n 6= 6, there is at least one pair of orthogonal Latin
squares.

What is not known
How many pairs of orthogonal Latin squares are there when n is
not a power of a prime number?


