Dungeon Master's dice
 (and other probability problems)

Ian Thompson

Department of Mathematical Sciences
University of Liverpool

- Games using dice have been around since ancient times.
- Games using dice have been around since ancient times.
- This Roman twenty sided dice sold at auction for 18,000 USD in 2015.
- Games using dice have been around since ancient times.
- This Roman twenty sided dice sold at auction for 18,000 USD in 2015.
- A simple game involved betting on the outcome of throwing dice you win if you predict the correct score.
- Games using dice have been around since ancient times.
- This Roman twenty sided dice sold at auction for 18,000 USD in 2015.
- A simple game involved betting on the outcome of throwing dice you win if you predict the correct score.
- Sixteenth century gamblers knew that 10 is more likely than 9 on a throw of three six-sided dice, but didn't understand why:

10:	®®®	9:	\bigcirc
¢	¢ $\odot \bigcirc$	®®®	10: 0
13: 0	$\bigcirc \odot$	¢ $\odot \bigcirc$	$\odot \odot \cdot \odot$

- Games using dice have been around since ancient times.
- This Roman twenty sided dice sold at auction for 18,000 USD in 2015.
- A simple game involved betting on the outcome of throwing dice you win if you predict the correct score.
- Sixteenth century gamblers knew that 10 is more likely than 9 on a throw of three six-sided dice, but didn't understand why:

10:	®®®®	9:	$\bigcirc \odot$
O-8	¢ 6	®O	(3)
(3) 0°	O \odot	(8)	$\odot \cdot \odot$

- Six possible combinations in both cases: can you see the flaw in their reasoning?

Exercise 1

Complete the table showing the possible scores obtained by throwing two six-sided dice, and calculate their probabilities.
Score Probability

Exercise 1

Complete the table showing the possible scores obtained by throwing two six-sided dice, and calculate their probabilities.
Score Probability

Exercise 1

Complete the table showing the possible scores obtained by throwing two six-sided dice, and calculate their probabilities.

							Score	Probability
							2	
	\odot	\odot	\odot	©	\bigcirc	;	3	
							4	
\odot							5	
\odot							6	
\%							7	
\%							8	
-						12	9	
							10	
							11	
							12	1/36

Exercise 1

Complete the table showing the possible scores obtained by throwing two six-sided dice, and calculate their probabilities.
Score Probability

Exercise 1

Complete the table showing the possible scores obtained by throwing two six-sided dice, and calculate their probabilities.

Score	Probability
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	$2 / 36$
12	$1 / 36$

- Even in this simple problem, there are three concepts:
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot)$.
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- For two dice:
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot \cdot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- For two dice:
- There are 36 permutations, each with probability $1 / 36$.
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \cdot$ is the same as $\because \odot \cdot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- For two dice:
- There are 36 permutations, each with probability $1 / 36$.
- Each combination occurs twice, e.g. $\odot \odot$ and $\odot \odot$, except those where both dice show the same number.
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- For two dice:
- There are 36 permutations, each with probability $1 / 36$.
- Each combination occurs twice, e.g. $\odot \odot$ and $\odot \odot$, except those where both dice show the same number.
- Thus, there are 6 combinations with probability $1 / 36$ and 15 with probability $2 / 36$.
- Even in this simple problem, there are three concepts:
- The score, which we get by adding the numbers on the dice.
- The combination, which is the set of numbers where order doesn't matter (so $\odot \odot$ is the same as $\because \odot)$.
- The permutation, which is the set of numbers where order does matter (note: you can't fully distinguish the permutations if you throw multiple identical dice together).
- For two dice:
- There are 36 permutations, each with probability $1 / 36$.
- Each combination occurs twice, e.g. $\odot \odot$ and $\odot \odot$, except those where both dice show the same number.
- Thus, there are 6 combinations with probability $1 / 36$ and 15 with probability $2 / 36$.
- Some scores can be achieved by more than one combination, e.g. $\odot \odot$, $\odot \cdot:$ and $\odot \odot$, but others (e.g. 11) can only be achieved by one.

Exercise 1 answers

Two dice:
Score Probability

	\bigcirc	\odot	\odot	;	\%	(0)
\bigcirc	2	3	4	5	6	7
\odot	3	4	5	6	7	8
\odot	4	5	6	7	8	9
(\%)	5	6	7	8	9	10
¢	6	7	8	9	10	11
(1)	7	8	9	10	11	12

2	$1 / 36$
3	$2 / 36$
4	$3 / 36$
5	$4 / 36$
6	$5 / 36$
7	$6 / 36$
8	$5 / 36$
9	$4 / 36$
10	$3 / 36$
11	$2 / 36$
12	$1 / 36$

Three dice:

Score	3	4	5	6	7	8	9	10
Probability $(/ 216)$	1	3	6	10	15	21	25	27

Score	11	12	13	14	15	16	17	18
Probability $(/ 216)$	27	25	21	15	10	6	3	1

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

- nDj means ' $n j$-sided dice'.
- An ordinary long sword inflicts 1D8 damage
- A magic missile spell cast by a $7^{\text {th }}$ level mage (wizard) inflicts $4 D 4+4$ damage.

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

- nDj means ' $n j$-sided dice'.
- An ordinary long sword inflicts 1D8 damage
- A magic missile spell cast by a $7^{\text {th }}$ level mage (wizard) inflicts $4 D 4+4$ damage.
- Suppose the Dungeon Master forgets to bring his dice to a game.

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

- $n D j$ means ' $n j$-sided dice'.
- An ordinary long sword inflicts 1D8 damage
- A magic missile spell cast by a $7^{\text {th }}$ level mage (wizard) inflicts $4 D 4+4$ damage.
- Suppose the Dungeon Master forgets to bring his dice to a game.
- He can probably find some D6 quite easily.

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

- nDj means ' $n j$-sided dice'.
- An ordinary long sword inflicts 1D8 damage
- A magic missile spell cast by a $7^{\text {th }}$ level mage (wizard) inflicts $4 D 4+4$ damage.
- Suppose the Dungeon Master forgets to bring his dice to a game.
- He can probably find some D6 quite easily.
- Can we simulate the other dice using multiple D6?

Dungeons \& Dragons

- Dungeons \& Dragons is a game played with various types of dice.

- nDj means ' $n j$-sided dice'.
- An ordinary long sword inflicts 1D8 damage
- A magic missile spell cast by a $7^{\text {th }}$ level mage (wizard) inflicts $4 D 4+4$ damage.
- Suppose the Dungeon Master forgets to bring his dice to a game.
- He can probably find some D6 quite easily.
- Can we simulate the other dice using multiple D6?
- We can use the scores, the combinations or (with different coloured dice) the permutations.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.
- It became famous after appearing in Parade Magazine (in the US) in 1990.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.
- It became famous after appearing in Parade Magazine (in the US) in 1990.
- This version described a gameshow, with three doors, one concealing a car and two concealing goats.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.
- It became famous after appearing in Parade Magazine (in the US) in 1990.
- This version described a gameshow, with three doors, one concealing a car and two concealing goats.
- The correct way to think about it is as follows:
- Correct initial guess (probability: $1 / 3$), sticking wins, switching loses.
- Incorrect initial guess (probability 2/3), switching wins, sticking loses.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.
- It became famous after appearing in Parade Magazine (in the US) in 1990.
- This version described a gameshow, with three doors, one concealing a car and two concealing goats.
- The correct way to think about it is as follows:
- Correct initial guess (probability: $1 / 3$), sticking wins, switching loses.
- Incorrect initial guess (probability 2/3), switching wins, sticking loses.

Upon an incorrect initial guess (goat), the host must open the other goat door, leaving the car as the only possible switch.

The Monty Hall problem

- The three card game we have played is called the 'Monty Hall problem'.
- It became famous after appearing in Parade Magazine (in the US) in 1990.
- This version described a gameshow, with three doors, one concealing a car and two concealing goats.
- The correct way to think about it is as follows:
- Correct initial guess (probability: $1 / 3$), sticking wins, switching loses.
- Incorrect initial guess (probability 2/3), switching wins, sticking loses.

Upon an incorrect initial guess (goat), the host must open the other goat door, leaving the car as the only possible switch.

- Hence, the chance of winning is better if the contestant switches, but not everyone understands this, even after it has been explained.
"You blew it, and you blew it big! Since you seem to have difficulty grasping the basic principle at work here, I'll explain. After the host reveals a goat, you now have a one-in-two chance of being correct. Whether you change your selection or not, the odds are the same. There is enough mathematical illiteracy in this country, and we don't need the world's highest IQ propagating more. Shame!"

Scott Smith, Ph.D. University of Florida

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.
- More matches means more prize money, and six matches wins the jackpot (usually £millions).

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.
- More matches means more prize money, and six matches wins the jackpot (usually £millions).
- The odds are tricky to calculate:

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.
- More matches means more prize money, and six matches wins the jackpot (usually £millions).
- The odds are tricky to calculate:
- The events (drawing numbers) are not independent. Once a ball is drawn, it cannot be drawn again, so the probability of a match depends on what has happened before.

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.
- More matches means more prize money, and six matches wins the jackpot (usually £millions).
- The odds are tricky to calculate:
- The events (drawing numbers) are not independent. Once a ball is drawn, it cannot be drawn again, so the probability of a match depends on what has happened before.
- We must be very careful not to count any possibilities twice.

Lotto

- In the main UK National Lottery game (Lotto), players choose six numbers from 1 to 59.
- Six numbers are then chosen at random by a machine with 59 numbered balls.
- Prizes are awarded to players who match at least three balls.
- More matches means more prize money, and six matches wins the jackpot (usually £millions).
- The odds are tricky to calculate:
- The events (drawing numbers) are not independent. Once a ball is drawn, it cannot be drawn again, so the probability of a match depends on what has happened before.
- We must be very careful not to count any possibilities twice.

> In making the calculation, the numbers themselves are irrelevant! Each ball is either in the player's choice of six (\bullet) or not (\bullet).

Probability of $\bullet \bullet \bullet \bullet \bullet \bullet$

Probability of $\bullet \bullet \bullet \bullet \bullet \bullet$

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.

Probability of $\bullet \bullet \bullet \bullet \bullet \bullet$

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.

Probability of $\bullet \bullet \bullet \bullet \bullet \bullet$

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.
- If this happens, the probability of the third ball being \bullet is $\frac{4}{57}$.

Probability of

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.
- If this happens, the probability of the third ball being \bullet is $\frac{4}{57}$.
- 56 balls remain: $3 \bullet$ and $53 \bullet$. Probability that the next is $\bullet \frac{53}{56}$.

Probability of

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.
- If this happens, the probability of the third ball being \bullet is $\frac{4}{57}$.
- 56 balls remain: $3 \bullet$ and 53 • Probability that the next is $\bullet \frac{53}{56}$.
- Two more •: $\frac{52}{55} \times \frac{51}{54}$.

Probability of

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.
- If this happens, the probability of the third ball being \bullet is $\frac{4}{57}$.
- 56 balls remain: $3 \bullet$ and 53 . Probability that the next is $\bullet \frac{53}{56}$.
- Two more •: $\frac{52}{55} \times \frac{51}{54}$.
- The probability of $\bullet \bullet \bullet \bullet \bullet$ is

$$
\frac{6}{59} \times \frac{5}{58} \times \frac{4}{57} \times \frac{53}{56} \times \frac{52}{55} \times \frac{51}{54}=\frac{11,713}{22,528,737}
$$

Probability of $\bullet \bullet \bullet \bullet \bullet$

- Initially, there are 59 balls: 6 - and 53 - The probability of the first ball being \bullet is $\frac{6}{59}$.
- If this happens, the probability of the second ball being \bullet is $\frac{5}{58}$.
- If this happens, the probability of the third ball being \bullet is $\frac{4}{57}$.
- 56 balls remain: $3 \bullet$ and $53 \bullet$. Probability that the next is $\bullet \frac{53}{56}$.
- Two more •: $\frac{52}{55} \times \frac{51}{54}$.
- The probability of $\bullet \bullet \bullet \bullet \bullet$ is

$$
\frac{6}{59} \times \frac{5}{58} \times \frac{4}{57} \times \frac{53}{56} \times \frac{52}{55} \times \frac{51}{54}=\frac{11,713}{22,528,737}
$$

- In fact this is the probability of any arrangement of 3 - and $3 \bullet$. Changing the order just swaps around the numbers in the numerator.
- Now count the number of arrangements that contain precisely three matches.
- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.
- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.

M	R	Possibilities
2	$3,4,5$ or 6	4
3	4,5 or 6	3
4	5 or 6	2
5	6	1

- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.

M	R	Possibilities
2	$3,4,5$ or 6	4
3	4,5 or 6	3
4	5 or 6	2
5	6	1

- All rows except the first will appear again when $L=2$.
- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.

M	R	Possibilities
2	$3,4,5$ or 6	4
3	4,5 or 6	3
4	5 or 6	2
5	6	1

- All rows except the first will appear again when $L=2$.
- The last two rows will appear again when $L=3$, and the last will appear one more time when $L=4$.
- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.

M	R	Possibilities
2	$3,4,5$ or 6	4
3	4,5 or 6	3
4	5 or 6	2
5	6	1

- All rows except the first will appear again when $L=2$.
- The last two rows will appear again when $L=3$, and the last will appear one more time when $L=4$.
- Hence, the number of arrangements is

$$
(1 \times 4)+(2 \times 3)+(3 \times 2)+(4 \times 1)=20 .
$$

- Now count the number of arrangements that contain precisely three matches.
- The following table shows the possible positions of the middle (M) and right $(R) \bullet$ when the left $(L) \bullet$ is in position 1.

M	R	Possibilities
2	$3,4,5$ or 6	4
3	4,5 or 6	3
4	5 or 6	2
5	6	1

- All rows except the first will appear again when $L=2$.
- The last two rows will appear again when $L=3$, and the last will appear one more time when $L=4$.
- Hence, the number of arrangements is

$$
(1 \times 4)+(2 \times 3)+(3 \times 2)+(4 \times 1)=20 .
$$

- The probability of three matches is

$$
\text { Probability of } \bullet \bullet \bullet \bullet \bullet \times 20=\frac{11,713}{22,528,737} \times 20 \approx \frac{1}{96}
$$

The Sally Clark case

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.
- The defence attributed to both incidents 'Sudden Infant Death Syndrome' (SIDS, sometimes called cot death).

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.
- The defence attributed to both incidents 'Sudden Infant Death Syndrome' (SIDS, sometimes called cot death).
- The prosecution argued that this was highly unlikely. According to expert witness Prof Roy Meadow,

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.
- The defence attributed to both incidents 'Sudden Infant Death Syndrome' (SIDS, sometimes called cot death).
- The prosecution argued that this was highly unlikely. According to expert witness Prof Roy Meadow,
- one sudden infant death in a family is a tragedy, two is suspicious and three is murder unless proven otherwise

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.
- The defence attributed to both incidents 'Sudden Infant Death Syndrome' (SIDS, sometimes called cot death).
- The prosecution argued that this was highly unlikely. According to expert witness Prof Roy Meadow,
- one sudden infant death in a family is a tragedy, two is suspicious and three is murder unless proven otherwise
- for an affluent non-smoking family like the Clarks the probability of a single cot death is $1 / 8,543$, so the probability of two cot deaths in the same family is

$$
\frac{1}{8,543} \times \frac{1}{8,543}=\frac{1}{72,982,849}
$$

The Sally Clark case

- Sally Clark was a British solicitor, who was tried for murder in 1999 following the deaths of two of her infant sons.
- The defence attributed to both incidents 'Sudden Infant Death Syndrome' (SIDS, sometimes called cot death).
- The prosecution argued that this was highly unlikely. According to expert witness Prof Roy Meadow,
- one sudden infant death in a family is a tragedy, two is suspicious and three is murder unless proven otherwise
- for an affluent non-smoking family like the Clarks the probability of a single cot death is $1 / 8,543$, so the probability of two cot deaths in the same family is

$$
\frac{1}{8,543} \times \frac{1}{8,543}=\frac{1}{72,982,849}
$$

- Sally Clark was convicted, and sentenced to life in prison.

Euromillions

- A lottery game that can be played in nine European coutries.

Euromillions

- A lottery game that can be played in nine European coutries.
- In 2012, Adrian and Gillian Bayford won the biggest ever Euromillions jackpot, $€ 190,000,000$ (about $£ 148,000,000$).

Euromillions

- A lottery game that can be played in nine European coutries.
- In 2012, Adrian and Gillian Bayford won the biggest ever Euromillions jackpot, $€ 190,000,000$ (about $£ 148,000,000$).
- At the time, the probability of this was around $\frac{1}{117,000,000}$.

Euromillions

- A lottery game that can be played in nine European coutries.
- In 2012, Adrian and Gillian Bayford won the biggest ever Euromillions jackpot, $€ 190,000,000$ (about $£ 148,000,000$).
- At the time, the probability of this was
around $\frac{1}{117,000,000}$.
- So the Bayfords must have cheated, right?!

Euromillions

- A lottery game that can be played in nine European coutries.
- In 2012, Adrian and Gillian Bayford won the biggest ever Euromillions jackpot, $€ 190,000,000$ (about $£ 148,000,000$).
- At the time, the probability of this was around $\frac{1}{117,000,000}$.
- So the Bayfords must have cheated, right?!

- Wrong. Unlikely things do happen to some people, especially in large populations!

Euromillions

- A lottery game that can be played in nine European coutries.
- In 2012, Adrian and Gillian Bayford won the biggest ever Euromillions jackpot, $€ 190,000,000$ (about $£ 148,000,000$).
- At the time, the probability of this was around $\frac{1}{117,000,000}$.
- So the Bayfords must have cheated, right?!

- Wrong. Unlikely things do happen to some people, especially in large populations!
- The only useful way to view the probability of winning after the event is to compare it to the probability that the Bayfords somehow defrauded the lottery.

Back to the Sally Clark case. . .

Aside from being potentially misleading, the figure of $1 / 73,000,000$ is wrong for two basic reasons.

Back to the Sally Clark case. . .

Aside from being potentially misleading, the figure of $1 / 73,000,000$ is wrong for two basic reasons.
(1) The probability used for one instance of SIDS is incorrect. The populationwide figure for the UK at the time was $1 / 1,300$. Meadows accounted for factors that made SIDS less likely (affluent, non-smoking family), but did not adjust for factors that made it more likely (boys are more prone to SIDS).

Back to the Sally Clark case. . .

Aside from being potentially misleading, the figure of $1 / 73,000,000$ is wrong for two basic reasons.
(1) The probability used for one instance of SIDS is incorrect. The populationwide figure for the UK at the time was $1 / 1,300$. Meadows accounted for factors that made SIDS less likely (affluent, non-smoking family), but did not adjust for factors that made it more likely (boys are more prone to SIDS).
(2) The probability of two instances is calculated by squaring the probability of one. The Royal Statistical Society wrote that this "would only be valid if SIDS cases arose independently within families, an assumption that would need to be justified empirically. Not only was no such empirical justification provided in the case, but there are very strong a priori reasons for supposing that the assumption will be false. There may well be unknown genetic or environmental factors that predispose families to SIDS, so that a second case within the family becomes much more likely.

What happened next?

What happened next?

- After a lengthy legal battle, Sally Clark's conviction was finally overturned by the Court of Appeal in 2003. The judges wrote that
... "we rather suspect that with the graphic reference by
Professor Meadow to the chances of backing long odds winners year after year it may have had a major effect on [the jury's] thinking notwithstanding the efforts of the trial judge to down play it."

What happened next?

- After a lengthy legal battle, Sally Clark's conviction was finally overturned by the Court of Appeal in 2003. The judges wrote that
... "we rather suspect that with the graphic reference by
Professor Meadow to the chances of backing long odds winners year after year it may have had a major effect on [the jury's] thinking notwithstanding the efforts of the trial judge to down play it."
- In 2004, Ray Hill published an article in which he tried to calculate the probability more carefully, noting several places where the available data was insufficient, or difficult to interpret. He noted that
"One wonders whether the Clark jury would have convicted if, instead of being given the 'once in a hundred years figure', they had been told that second cot deaths occur around four or five times a year and indeed happen rather more frequently than second infant murders in the same family."

Think carefully about probability!

Thanks for your attention.

