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Start with a row of 0’s followed by a row of 1’s. Start the third
row with a suitable string of positive integers. Then construct
subsequent rows by ensuring that each tiny diamond

b
a d

c

of the pattern obeys the so-called unimodular rule ad − bc = 1.
As this can be rearranged to give c = (ad − 1)/b, all the numbers
in lower rows of the pattern can be calculated. For example, if we
start the third row with the string of numbers 1 2 2 3 1 2 4, we get
the pattern

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4
1 3 5 2 1 7

1 7 3 1 3
2 4 1 2

1 1 1
0 0



Having reached a row of 1’s followed by a row of 0’s, it is natural
to continue these two lowest rows to the right. We can then use
the unimodular rule to calculate more terms:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

1 2 2 3 1 2 4 1
1 3 5 2 1 7 3 1

1 7 3 1 3 5 2 1
2 4 1 2 2 3 1 2

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0



Understanding periodicity

Consider a small piece of a frieze in which the unimodular rule
holds:

c
b r

a q
p

The rule shows that br − cq = 1 and aq − bp = 1. So

br − cq = aq − bp.

This gives b(p + r) = q(a + c),

so that
p + r

q
=

a + c

b

Let’s call this equation the ratios rule. It also holds for triples that
run north-west to south-east,



0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1

x y c . . . . x ′′ y ′′

z b r . . . . .
a q . . . . .

p . x ′ y ′ . .
1 1 1 1 1

0 0 0 0 0
Applying the ratios rule to consecutive triples on the left gives

x + 0

1
=

z + 1

y
=

a + c

b
=

p + r

q
= . . . =

0 + x ′

1
,

so x = x ′. Similarly (x ′ + 0)/1 = (0 + x ′′)/1, so x = x ′′ and also
y = y ′ = y ′′. This shows that the pattern is repeating and it is
easy to check that, if the frieze has n + 1 rows, it repeats n units
to the right. The fact that x = x ′ and that the pattern can be
built from the bottom upwards shows that the pattern has
glide-reflection symmetry as well.



How to ensure that a frieze consists of whole numbers
Method 1: Diagonal entries

A complete frieze with n + 1 rows is determined as soon as we
have chosen the n + 1 terms in a diagonal. How much freedom of
choice do we have if we wish all the numbers to be integers?
Suppose that the frieze is:

0 0 0 0 0 0 0 . . .
f0 1 1 1 1 1 . . .

f1 a1 a2 a3 a4 . . .
f2 . . . . . .

f3 . . . . .
f4 . . . .

. . .

By the ratios rule,

f0 + f2
f1

=
0 + a1

1
= a1,

f1 + f3
f2

= a2,
f2 + f4
f3

= a3, etc.

So in a frieze of integers each fi divides the sum, fi−1 + fi+1, of its
neighbours.



Converely, if this divisibility rule is satisfied in some diagonal of
integers, then all the ai ’s are integers. Suppose that the next
diagonal consists of

g0(= 0) g1(= 1) g2(= a1) g3 g4 . . .

By the ratios rule,

gi−1 + gi+1

gi
=

fi−1 + fi+1

fi
= ai .

So gi−1 + gi+1 = aigi . Hence gi+1 = aigi − gi−1. This tells us that
if gi−1 and gi are integers, then so is gi+1. But both g0 and g1 are
integers, so g2 is also an integer. Repeating the argument,
g3, g4, . . . must all be integers. The ratios rule and the divisibility
property of the fi ’s show that the gi ’s also have the divisibility
property. Thus, starting with a single diagonal of integers that
have the divisbility property, the next diagonal must also have
these properties . . . and so must the next diagonal and all the
diagonals, so the entire frieze consists of integers.



How to ensure that a frieze consists of whole numbers
Method 2: Triangulated polygons

To find suitable numbers for the third row of a frieze with n + 1
rows, triangulate a convex n-gon and note how many triangles
meet at each vertex. These numbers, repeated in cyclic order,
produce a frieze of integers. For example, when n = 7, a
triangulated heptagon gives the cycle of numbers 1 2 2 3 1 2 4
that form the third row of our first frieze. (See diagram.)

John Conway proved that this recipe always produces a frieze of
natural numbers and, conversely, that every frieze of natural
numbers comes from a triangulated polygon in this way.



One step in Conway’s proof: Construct a frieze for a triangulated
octagon from our original (heptagonal) frieze. Separate the
triangular portions of our original frieze to leave diagonal channels
between them. Then put a single line of new numbers into each
channel so that each new number is the sum of its nearest
neighbours in the separated portions. This gives the new pattern
shown:

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1

1 2 2 2 3 1 2 5 1 2
1 3 3 5 2 1 9 4 1 3

1 4 7 3 1 4 7 3 1 4
1 9 4 1 3 3 5 2 1 9

2 5 1 2 2 2 3 1 2 5
1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0



This new pattern is a frieze, because when we pull apart a tiny
unimodular diamond

b
a d

c

and insert the entries a + b and c + d in the channel as shown,

b
a + b d

a c + d
c

the unimodular law still holds in the two diamonds created, since

(a + b)d − b(c + d) = a(c + d) − (a + b)c = ad − bc = 1.

We can check that the third row of our new frieze corresponds to
the cycle of numbers of triangles that meet at each vertex of the
octagon.


