Conjugate numbers, irrational numbers and Pell's equation

Peter Giblin
pjgiblin@liv.ac.uk

First, an experiment, for which you'll need a calculator
Ex. 1. Work out $(2+\sqrt{3})^{n}$ for $n=1,2,3,4,5,6,7,8$ to a few decimal places, and note down the answers

Ex. 2. Work out $(1+2 \sqrt{3})^{n}$ for $n=1, \ldots, 8$ similarly.
Do you notice anything special about the first example which is not true of the second?

For Ex.1, changing the sign, $\quad 2-\sqrt{3}=0.268 \ldots$... For Ex.2, changing the sign, $1-2 \sqrt{3}=-2.46 \ldots .$.

So in Ex.1, the powers of $2-\sqrt{3}$ will tend to 0 and the powers of $2+\sqrt{3}$ get closer and closer to whole numbers
but in Ex.2, the powers of $1-2 \sqrt{3}$ get ever bigger in absolute value (and alternating in sign) while the powers of $1+2 \sqrt{3}$ don't seem to be doing anything interesting!

So let's look at which positive integers a, b satisfy $-1<a-b \sqrt{3}<1$, which will make powers of $a-b \sqrt{3}$ tend to 0 . (Note x^{n} always tends to zero for large n when $-1<x<1$.)

For example, with $a=$ one of the numbers $1,2,3, \ldots, 8$ what are the possible b ?

$$
\begin{array}{clll}
\text { Find solutions to } & a & b & \\
-1<a-b \sqrt{3}<1 \text { for } & 1 & 1 & a-b \sqrt{3} \text { and } \\
a=1 \text { or } 2 \text { or....or } 8 & 2 & 1 & a+b \sqrt{3} \\
\text { This is the same as } & 3 & 2 & a+1 \\
\frac{a-1}{b}<\sqrt{3}<\frac{a+1}{b} & 5 & 2 & \text { are called } \\
& 6 & 3 & \text { conjugate } \\
& 6 & 4 & \\
& 7 & 4 & \\
& 8 & 5 &
\end{array}
$$

For each of these pairs the powers of $a-b \sqrt{3}$ become closer and closer to zero; also the powers of $a+b \sqrt{3}$ become closer and closer to whole numbers.

So, can we explain this strange occurrence of whole numbers?

Expand $(a+b \sqrt{3})^{2}$ and $(a-b \sqrt{3})^{2}$
$(a+b \sqrt{3})^{2}=a^{2}+3 b^{2}+2 a b \sqrt{3}=A+B \sqrt{3}$ say
$(a-b \sqrt{3})^{2}=a^{2}+3 b^{2}-2 a b \sqrt{3}=A-B \sqrt{3}$
"Just change $\sqrt{3}$ to $-\sqrt{3}$ everywhere it occurs"
The same goes for $(a+b \sqrt{3})^{n}$ and $(a-b \sqrt{3})^{n}$
Indeed let $(a+b \sqrt{3})^{n}=A+B \sqrt{3}$. If a, b are integers then so are A, B.
Also

$$
(a-b \sqrt{3})^{n}=\mathrm{A}-\mathrm{B} \sqrt{3}
$$

So $(a+b \sqrt{3})^{n}+(a-b \sqrt{3})^{n}=2 A$ and if $-1<a-b \sqrt{3}<1$ so $(a-b \sqrt{3})^{n}$ tends to 0 as n gets bigger then $(a+b \sqrt{3})^{n}$ must get closer to the integer $2 A$.

Is it ever possible for $a-b \sqrt{3}=1$ or -1 when a, b are integers? Remember the following fact about fractions: If $\frac{A}{B}$ is a fraction in its lowest terms (A, B positive integers) then the other fractions equal to this one are exactly those of the form $\frac{A k}{B k}$ for an integer k.
For example $\frac{4}{7}$ is in its lowest terms and all the fractions equal to this one are of the form $\frac{4 k}{7 k}$ such as $\frac{8}{14}, \frac{20}{35}$ etc.
Now suppose $\frac{A}{B}$ is in its lowest terms and $\left(\frac{A}{B}\right)^{2}=N(N$ a positive integer).
Rewrite this as $\frac{A}{B}=$ another fraction and then use the fact above about a fraction in lowest terms equal to another fraction. You'll find after rearrangement that $N=k^{2}: N$ is a square number. So the only square roots expressible as fractions are square roots of square numbers like 4,9,16, 121 .

It is never possible for $a-b \sqrt{3}=1$ or -1 when a, b are integers, since it would imply

$$
\sqrt{3}=\frac{a-1}{b} \text { or } \sqrt{3}=\frac{a+1}{b}
$$

Similarly $a+b \sqrt{3}=1$ or -1 is impossible.

Even though $a-b \sqrt{3}=1$ and $a+b \sqrt{3}=1$ have no solutions in integers what about
$a^{2}-3 b^{2}=(a-b \sqrt{3})(a+b \sqrt{3})=1$? [Difference of two squares!]
Can you find some solutions?
$a=2, b=1$
$a=7, b=4$
are solutions. How could we find some more?
Well, $(2-\sqrt{3})^{n}(2+\sqrt{3})^{n}$ will also $=1$ for any n
$n=2$ gives the solution $a=7, b=4$:
$1=(2-\sqrt{3})^{2}(2+\sqrt{3})^{2}=(7-4 \sqrt{3})(7+4 \sqrt{3})=7^{2}-4^{2} \times 3$
$n=3$ gives the solution $a=26, b=15$
For this, work out $(2+\sqrt{3})^{3}$
$n=4$ gives the solution $a=97, b=56$
etc. This provides infinitely many solutions.

In fact for any integer $d>0$ there are always infinitely many solutions to the "Pell equation"
$a^{2}-d b^{2}=1$.
Pell's equation is important in applications to continued fractions and factoring large numbers.

Sometimes the smallest solution is quite big however: if $d=109$ the smallest solution is
$a=158070671986249$ [can you say this number?!] $b=15140424455100$

The great number theorist Pierre de Fermat challenged his friend Bernard Frénicle de Bessy in 1657 to find the smallest solution when $d=61$ "in order not to give you too much trouble". (It's $a=1766319049, b=226153980$.)

Smallest solutions for $d=5,6,7,8$ are not hard to find and then other solutions come from using $(a+b \sqrt{ })^{n}$ Look up Pell's equation on Google!

Equations $a^{2}-d b^{2}=c$ may have no integer solutions for values of c other than 1 . For example
$a^{2}-2 b^{2}=3$ has no integer solutions!
(How on earth might you prove such a statement??)
whereas $a^{2}-2 b^{2}=7$ has infinitely many (e.g. $a=3, b=1$).
This is part of a very big subject called the representation of integers by means of quadratic forms. A very weird example here is the so-called Fifteen Theorem [look it up on Google!].

Let's think about $a^{2}-2 b^{2}=3$.

- Why must a^{2} be odd? Why must a be odd?
- What remainder must a^{2} leave when divided by 8 ?

$$
\left[(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1\right]
$$

- So what remainder will $2 b^{2}$ leave when divided by 8 ?
- So what remainder will b^{2} give when divided by 4 ?
- Is this possible?

