
Binary Arithmetic: counting with ones

Robin McLean

28 February 2015



Weighing in ounces

Suppose we have one of each of the following weights:
32oz, 16oz, 8oz, 4oz, 2oz and 1oz.

Can we weigh any whole number of ounces?
e.g. 43oz = 32oz + 8oz + 2oz + 1oz.

Are there any other ways of making 43oz with our given weights?
What about other weights from 0oz to 63oz?



Arithmetic base 2

For ordinary arithmetic we use base 10 with columns (100s, 10s and
units) that are powers of 10 and digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
We could use base 2, working with columns that are powers of 2.
Corresponding to digits, we use bits 0 and 1. For example:

32 16 8 4 2 1

43 = 1 0 1 0 1 1



Roman numerals

M 1,000
D 500
C 100
L 50
X 10
V 5
I 1

Can you interpret these Roman numerals?
MDCCCCLXXXXVIIII
MCMXCIX
MIM
Roman numerals are posh, but useless. The
representation of a number may not be unique
and the system is not based on powers.



1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111
16 10000

17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111
32 100000



Digits and successive remainders in base ten

Suppose we divide 4,357 repeatedly by 10:

10)4357
10) 435 rem 7
10) 43 rem 5
10) 4 rem 3
10) 0 rem 4

successive remainders (read upwards) give the digits of our original
number. This is because

4357 = 435x10 + 7 = {[43x10] + 5}x10 + 7

= {[(4x10 + 3)x10] + 5}x10 + 7

= 4x103 + 3x102 + 5x10 + 7.



Converting from decimal to binary

When we divide a number repeatedly by 2, successive remainders
(read upwards) give its digits (now bits) in base 2.
For example, to convert 7510 to base 2:

2)75
2)37 rem 1
2)18 rem 1
2) 9 rem 0
2) 4 rem 1
2) 2 rem 0
2) 1 rem 0
2) 0 rem 1

so 7510 = 10010112.



A friend claims that you don’t need to know all your tables,
provided that you can multiply and divide by 2. Moreover you
needn’t bother with the remainders! This sounds suspicious, but
your friend shows you an example:
To work out 13 x 27, put the numbers in two columns. In the first
column, produce more numbers by dividing by 2 (ignoring
remainders), Stop when you reach 1. In the second column,
produce more numbers by doubling. Finally, add up those numbers
in the second column (marked with an asterisk) that are opposite
odd numbers in the first column.

13 27 ∗
6 54

3 108 ∗
1 216 ∗

13x27 = 351



Puzzle

Does your friend’s method always work? Try it with some other
numbers.

If you think that it won’t always work, try to produce a
counterexample (an example in which it doesn’t work).

If you think that it does always work, try to show why .



Binary arithmetic

Addition is easy - think 1 + 1 is 0 down and 1 to carry.

Carrying in subtraction is slightly trickier, but subtraction can
always be done by complementary addition (described last month
by Elliott Tjia).

Multiplication is delightful - no hard tables. No OFSTED
inspectors said that children didn’t know their 1-times table!

Division is also very easy. At each stage in a long division sum,
the number you are dividing by either doesn’t go (so enter 0 in the
answer and bring down the next bit) or does go (necessarily only
once).



Bicimals

In base ten, fractions are often handled as decimals, with columns
representing 1

10 ths, 1
100 ths, 1

1000 ths,. . . to the right of the decimal
point. In binary arithmetic we have columns for 1

2 ,
1
4 ,

1
8 , . . . to the

right of a binary point. To express 1
3 as a bicimal, we could divide

1 by 11:

0.010101 . . .
11)1.000000 . . .

11
100

11 . . .

An alternative method is shown on the next slide.



1

3
=

1

4
+

1

12
=

1

4
+

1

4
x

1

3

=
1

4
+

1

4

(
1

4
+

1

4
x

1

3

)
=

1

4
+

1

16
+

1

16
x

1

3

=
1

4
+

1

16
+

1

16

(
1

4
+

1

4
x

1

3

)
=

1

4
+

1

16
+

1

64
+

1

64
x

1

3

=
1

4
+

1

16
+

1

64
+

1

256
+ . . . = 0.01010101 . . .2



An error-correcting code

Suppose that we wish to transmit messages (in the form of 0s and
1s) with less than 12 bits, and that our message may contain a
single error. Let us use the 1st, 2nd, 4th and 8th bits of the
message as checks, leaving the 3rd, 5th, 6th, 7th, 9th, . . . 15th bits
for the message itself. Our plan of campaign is as follows.
(1) Calculate the check bits x1, x2, x4 and x8.
(2) Transmit the entire message including check bits. Call this
x1, x2, x3, . . . x15.
(3) Call the entire received message y1, y2, y3, . . . , y15. Interrogate
different subsets of this message and use the idea of our number
cards to find where the error lies.
Recall that, for our length of message, each number card would
consist of all the numbers from one of the rows below:

1 3 5 7 9 11 13 15
2 3 6 7 10 11 14 15
4 5 6 7 12 13 14 15
8 9 10 11 12 13 14 15

endtabular



Choose the check bits x1, x2, x4 and x8 so that each of the
following sums is even:

x1 + x3 + x5 + x7 + x9 + x11 + x13 + x15
x2 + x3 + x6 + x7 + x10 + x11 + x14 + x15
x4 + x5 + x6 + x7 + x12 + x13 + x14 + x15
x8 + x9 + x10 + x11 + x12 + x13 + x14 + x15.



Example

Suppose that we wish to send the message M below. We calculate
the check bits (in bold) and transmit the complete string T.
Suppose that the string of bits R is received. The entries in this
row are y1, y2, . . . y15. Note that one error (underlined) has occurred.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M 0 1 1 0 0 1 0 1 1 1 0
T 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0
R 0 1 0 1 1 1 1 0 0 1 0 1 1 1 0

y1 + y3 + y5 + y7 + y9 + y11 + y13 + y15 is odd,
y2 + y3 + y6 + y7 + y10 + y11 + y14 + y15 is odd,
y4 + y5 + y6 + y7 + y12 + y13 + y14 + y15 is odd, and
y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 is even, so the recived
message, R, has an error in position 1 + 2 + 4 = 7. This can now
be corrected.



Bases within bases

Given the binary representation of a number, it is easy to find its
representation in any of the bases 4, 8, 16, . . . simply by taking the
binary columns 2 (or 3 or 4 . . . ) at a time, For example

32 16 8 4 2 1 16 4 1

4510 = 1 0 1 1 0 1 = 2 3 1
and

32 16 8 4 2 1 8 1

4510 = 1 0 1 1 0 1 = 5 5

In the same way, we can think of arithmetic base 100 or 1,000
. . . embedded in base 10. For example 5,371 can be considered as
53 in the 100s column and 71 in the units column. This allows you
to work to more decimal places than your calculator can display.



What is 12345678 x 87654321?

1012 108 104 1

1234 5678
8765 4321 x

2453 4638
533 2114

4976 7670
1081 6010

1082 1520 2237 4638



My calculator gives
√

2 as 1.4142136 so, if

√
2 = 1.4142136 + x ,

then x is numerically less than 5x10−8 and x2 < 2.5x10−15.
Squaring gives

2 = 1.41421362 + 2.8284272x + x2.

Using my calculator to multiply in base 104 shows that

1.41421362 = 2.00000010642496.

So x ≈ −1.0642496x10−7

2.8284272 ≈ −3.762690x10−8 to 14 d.p.

Thus
√

2 = 1.41421360000000− 0.00000003762690

= 1.41421356237310 to 14 decimal places.


