Answers
(1)

(2)

$$
\begin{array}{r}
11 \\
+\quad 100 \\
\hline 111
\end{array}
$$

(3)

(4)

(5)
$\begin{array}{r}1110 \\ +\quad 11000 \\ \hline 11110\end{array}$
(6)

(7)

(8)

(9)

(10)

(11)(a) $\frac{1}{5}=0.001100110011 \ldots 2$, (b) $\frac{3}{7}=0.011011011011 \ldots 2$.
(12) $x_{1}=1, x_{2}=0, x_{4}=1$ and $x_{8}=0$.
$y_{1}+y_{3}+y_{5}+y_{7}+y_{9}+y_{11}+y_{13}+y_{15}$ is odd,
$y_{2}+y_{3}+y_{6}+y_{7}+y_{10}+y_{11}+y_{14}+y_{15}$ is odd,
$y_{4}+y_{5}+y_{6}+y_{7}+y_{12}+y_{13}+y_{14}+y_{15}$ is even, and
$y_{8}+y_{9}+y_{10}+y_{11}+y_{12}+y_{13}+y_{14}+y_{15}$ is odd,
so the received message has an error in position $1+2+8=11$.
(13) $\sqrt{3}=1.73205080756887729353$ to 20 decimal places.
(14) If you use weights that are powers of $3(1,3,9,27, \ldots)$, any whole number of units can be weighed in exactly one way.

