Bayes' Theorem and Conditional Probability in the Real World

Mary Fortune

20 September 2014

I Toss A Coin

Questions

- What is the probabilty that it comes up heads?

I Toss a Coin

Questions

- What is the probabilty that it comes up heads?
- The coin comes up heads on the first toss. What is the probability that the next toss is also heads?

Some Definitions

Probability

$$
\mathbb{P}(A)
$$

"Probability of A"

Some Definitions

Probability

$$
\mathbb{P}(A)
$$

"Probability of A"
Union

$$
\mathbb{P}(A \cup B)
$$

"Probability of A and B"

Some Definitions

Probability

$$
\mathbb{P}(A)
$$

"Probability of A"
Union

$$
\mathbb{P}(A \cup B)
$$

"Probability of A and B"
Intersection

$$
\mathbb{P}(A \cap B)
$$

"Probability of A or B"

Some Definitions

Probability

$$
\mathbb{P}(A)
$$

"Probability of A"
Union

$$
\mathbb{P}(A \cup B)
$$

"Probability of A and B "
Intersection

$$
\mathbb{P}(A \cap B)
$$

"Probability of A or B"
Conditional

$$
\mathbb{P}(A \mid B)
$$

"Probability of A given B"

Venn Diagram

Venn Diagram - ctd

CAN YOU WRITE THE FOLLOWING IN TERMS OF X , Y AND Z :
■ $\mathbb{P}(A \cap B)$?

- $\mathbb{P}(A)$? $\mathbb{P}(B)$?
$\square \mathbb{P}(A \mid B)$?
CAN you write $\mathbb{P}(A \mid B)$ in terms of the other probabilities?

Venn Diagram - answer

- $\mathbb{P}(A \cap B)=z$

Venn Diagram - answer

- $\mathbb{P}(A \cap B)=z$
$■ \mathbb{P}(A)=x+z \quad \mathbb{P}(B)=y+z$

Venn Diagram - answer

- $\mathbb{P}(A \cap B)=z$

■ $\mathbb{P}(A)=x+z \quad \mathbb{P}(B)=y+z$

- $\mathbb{P}(A \mid B)=\frac{z}{y+z}$

Venn Diagram - answer

- $\mathbb{P}(A \cap B)=z$
$\square \mathbb{P}(A)=x+z \quad \mathbb{P}(B)=y+z$
- $\mathbb{P}(A \mid B)=\frac{z}{y+z}$

Hence:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Venn Diagram - answer

- $\mathbb{P}(A \cap B)=z$

■ $\mathbb{P}(A)=x+z \quad \mathbb{P}(B)=y+z$

- $\mathbb{P}(A \mid B)=\frac{z}{y+z}$

Hence:

$$
\begin{gathered}
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \\
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)
\end{gathered}
$$

Bayes' Theorem

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

$\mathbb{P}(B)$ is known as the Prior of B
$\mathbb{P}(B \mid A)$ is known as the Posterior

Choice of Prior

DID THE SUN JUST EXPLODE?
 (ITS NGFT, SO WERE NOT SURE.)

FREQUENTIST STATISTCIAN:

An Example

There are 50 people in my lab, of whom 7 are statisiticans.
Overall, only $\frac{1}{5}$ of my lab drink coffee. However, all but one of the statisicians drinks coffee.
You meet someone from my lab, and they are drinking coffee. What is the probability that they are a statistician?

Solution

Write \mathcal{S} for the event that someone is a statistician, and \mathcal{C} for the event that they drink coffee.

$$
\begin{gathered}
\mathbb{P}(\mathcal{S})=\frac{7}{50} \\
\mathbb{P}(\mathcal{C})=\frac{1}{5} \\
\mathbb{P}(\mathcal{C} \mid \mathcal{S})=\frac{6}{7}
\end{gathered}
$$

Solution

Write \mathcal{S} for the event that someone is a statistician, and \mathcal{C} for the event that they drink coffee.

$$
\begin{gathered}
\mathbb{P}(\mathcal{S})=\frac{7}{50} \\
\mathbb{P}(\mathcal{C})=\frac{1}{5} \\
\mathbb{P}(\mathcal{C} \mid \mathcal{S})=\frac{6}{7}
\end{gathered}
$$

Hence:

$$
\begin{aligned}
\mathbb{P}(\mathcal{S} \mid \mathcal{C}) & =\frac{\mathbb{P}(\mathcal{C} \mid \mathcal{S}) \mathbb{P}(\mathcal{S})}{\mathbb{P}(\mathcal{C})} \\
& =\frac{\frac{6}{7} \times \frac{7}{50}}{\frac{1}{5}} \\
& =\frac{3}{5}
\end{aligned}
$$

Sally Clark case

Convicted of killing her two sons, on the basis of misuse of statistics.

Sally Clark case

Convicted of killing her two sons, on the basis of misuse of statistics.

Probability of Two Cot Deaths in Family

- For a family like Sally Clark's (non-smoking and affluent), the chances of a single cot death are 1 in 8543.
- Hence the chances of two cot deaths is 1 in (8543×8543), about 1 in 73 million.
- This is exceptionally unlikely, and hence two apparent cot deaths are strong evidence for murder.

What is wrong with this logic?

The Prosecutor’s Fallacy

$$
\begin{gathered}
\mathbb{P}(\text { Innocent } \mid \text { Evidence }) \neq \\
\mathbb{P}(\text { Evidence } \mid \text { Innocent })
\end{gathered}
$$

Bayes' Theorem tells us that:

$$
\mathbb{P}(\text { Innocent } \mid E)=\frac{\mathbb{P}(E \mid \text { Innocent }) \mathbb{P}(\text { Innocent })}{\mathbb{P}(E)}
$$

and so:
$\mathbb{P}($ Innocent $\mid E)=\frac{\mathbb{P}(E \mid \text { Innocent }) \mathbb{P}(\text { Innocent })}{\mathbb{P}(E \mid \text { Innocent }) \mathbb{P}(\text { Innocent })+\mathbb{P}(E \mid \text { Guilty }) \mathbb{P}(\text { Guilty })}$

Medical Testing

A disease affects 1 person in every 10,000 . There is a test for this disease. If the subject has the disease, the test comes back positive 98% of the time. If the subject does not have the disease, the test comes back negative 98% of the time. Your patient has tested positive. What is the probability that they have the disease?

Medical Testing - Solution

Write \mathcal{D} for the event of having the disease, and write \mathcal{T} for the event of a postive test.

Medical Testing - Solution

Write \mathcal{D} for the event of having the disease, and write \mathcal{T} for the event of a postive test. From the problem, we have:
$\square \mathbb{P}(\mathcal{D})=0.0001$

- $\mathbb{P}($ not $\mathcal{D})=0.9999$
- $\mathbb{P}(\mathcal{T} \mid \mathcal{D})=0.98$

■ $\mathbb{P}(\mathcal{T} \mid \operatorname{not} \mathcal{D})=0.01$

Medical Testing - Solution

Write \mathcal{D} for the event of having the disease, and write \mathcal{T} for the event of a postive test. From the problem, we have:

- $\mathbb{P}(\mathcal{D})=0.0001$
- $\mathbb{P}(\operatorname{not} \mathcal{D})=0.9999$
- $\mathbb{P}(\mathcal{T} \mid \mathcal{D})=0.98$
- $\mathbb{P}(\mathcal{T} \mid \operatorname{not} \mathcal{D})=0.01$

Thus:

$$
\begin{gathered}
\mathbb{P}(\mathcal{D} \mid \mathcal{T})=\frac{\mathbb{P}(\mathcal{T} \mid \mathcal{D}) \mathbb{P}(\mathcal{D})}{\mathbb{P}(\mathcal{T})}=\frac{0.98 \times 0.0001}{\mathbb{P}(\mathcal{T})} \\
\mathbb{P}(\operatorname{not} \mathcal{D} \mid \mathcal{T})=\frac{\mathbb{P}(\mathcal{T} \mid \operatorname{not} \mathcal{D}) \mathbb{P}(\operatorname{not} \mathcal{D})}{\mathbb{P}(\mathcal{T})}=\frac{0.01 \times 0.9999}{\mathbb{P}(\mathcal{T})}
\end{gathered}
$$

But, we must have $\mathbb{P}(\mathcal{D} \mid \mathcal{T})+\mathbb{P}(\operatorname{not} \mathcal{D} \mid \mathcal{T})=1$ Hence:

$$
\mathbb{P}(\mathcal{D} \mid \mathcal{T})=\frac{(0.98 \times 0.0001)}{(0.98 \times 0.0001)+(0.01 \times 0.9999)}=0.0097
$$

Note

If A can only take a finite number of forms, A_{1}, \ldots, A_{n}, then, since $\sum_{i=1}^{n} \mathbb{P}\left(A_{i} \mid B\right)=1$:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

