University of Liverpool Maths Club November 2007

Peter Giblin

Counting

Find the five ways in which this 4×1 board can be tiled with squares and dominoes.

Find the five ways in which this 4×1 board can be tiled with squares and dominoes.

How many end in a square?
How many end in a domino?

Find the five ways in which this 4×1 board can be tiled with squares and dominoes.

How many end in a square?
How many end in a domino?
Write f_{n} for the number of ways to tile a $n \times 1$ board with squares and dominoes.

Find the five ways in which this 4×1 board can be tiled with squares and dominoes.

How many end in a square?
How many end in a domino?
Write f_{n} for the number of ways to tile a $n \times 1$ board with squares and dominoes.

So why is $f_{4}=f_{3}+f_{2}$?

Why will the same work to show that

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 3) ?
$$

Why will the same work to show that

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 3) ?
$$

What are f_{1} and f_{2} ?

Why will the same work to show that

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 3) ?
$$

What are f_{1} and f_{2} ?
Write down $f_{5}, f_{6}, f_{7}, f_{8}$

Why will the same work to show that

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 3) ?
$$

What are f_{1} and f_{2} ?
Write down $f_{5}, f_{6}, f_{7}, f_{8}$
Just for luck we'll define $f_{0}=1$. Then $f_{n}=f_{n-1}+f_{n-2}$ works for $n=2$ too!

Why will the same work to show that

$$
f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 3) ?
$$

What are f_{1} and f_{2} ?
Write down $f_{5}, f_{6}, f_{7}, f_{8}$
Just for luck we'll define $f_{0}=1$. Then $f_{n}=f_{n-1}+f_{n-2}$ works for $n=2$ too!
(The connexion with Fibonacci numbers F_{n} is that $f_{n-1}=F_{n}, n \geq 1$.)

Now consider this 6×1 board

Now consider this 6×1 board

Suppose we want to tile it with squares and dominoes using at least one domino.

Now consider this 6×1 board

Suppose we want to tile it with squares and dominoes using at least one domino.

How many ways?

Now consider this 6×1 board

Suppose we want to tile it with squares and dominoes using at least one domino.

How many ways?
Now let's count them a different way. Can someone explain why the number of ways is also

$$
f_{4}+f_{3}+f_{2}+f_{1}+f_{0} \quad\left(\text { remembering } f_{0}=1\right) ?
$$

(Think of where the last domino is placed!)

Now consider this 6×1 board

Suppose we want to tile it with squares and dominoes using at least one domino.

How many ways?
Now let's count them a different way. Can someone explain why the number of ways is also

$$
f_{4}+f_{3}+f_{2}+f_{1}+f_{0} \quad\left(\text { remembering } f_{0}=1\right) ?
$$

(Think of where the last domino is placed!)
So

$$
f_{4}+f_{3}+f_{2}+f_{1}+f_{0}=f_{6}-1
$$

The same argument proves this interesting
Theorem For any $n \geq 0$

$$
f_{n}+f_{n-1}+f_{n-2}+\ldots+f_{0}=f_{n+2}-1 .
$$

This is an example of a theorem which can be proved by counting the same things in two different ways.

Now by considering tilings of a $2 n \times 1$ board using at least one square see if you can understand why

$$
f_{5}+f_{3}+f_{1}=f_{6}-1
$$

(look at the position of the last square!) and more generally why

$$
f_{2 n-1}+f_{2 n-3}+\ldots+f_{3}+f_{1}=f_{2 n}-1
$$

with just the odd numbers appearing on the LHS.

A similar idea is tiling of circular bracelets such as this 6-bracelet:

with 'curved squares' and 'curved dominos'. We always call the first cell from the top towards the right 'Cell 1'. It might be covered by a curved square or, in two ways, by a curved domino.

Write ℓ_{n} for the number of ways for an n-bracelet.

A similar idea is tiling of circular bracelets such as this 6-bracelet:

with 'curved squares' and 'curved dominos'. We always call the first cell from the top towards the right 'Cell 1'. It might be covered by a curved square or, in two ways, by a curved domino.

Write ℓ_{n} for the number of ways for an n-bracelet.
Find the seven ways in which a 4-bracelet can be tiled ($\ell_{4}=7$).

(These numbers are called Lucas numbers.)

$$
f_{n}^{2}+f_{n+1}^{2}=f_{2 n+2}
$$

Look first at the case $n=2: f_{2}^{2}+f_{3}^{2}=f_{6}$.
Consider the middle point of the 6×1 board. There are two cases:
(i) there is a domino across this place, (ii) there is no domino across this place: the tiling is 'breakable' at the middle.
Does this idea work for $n=3: f_{3}^{2}+f_{4}^{2}=f_{8}$?
In general, consider the middle point of the $(2 n+2) \times 1$ board, that is the right-hand end of the $(n+1)^{\text {st }}$ cell of the board, which is a distance $n+1$ from the left-hand end of the board. There are two cases: (i) there is a domino across this place, (ii) there is no domino across this place: the tiling is 'breakable' at the middle.

$$
\ell_{n}=f_{n-1}+2 f_{n-2}, \quad n \geq 2
$$

Split the tilings of an n-necklace into (i) those for which the tile covering Cell 1 is a square, (ii) those for which the tile covering Cell 1 is a domino.
Look at say $n=4$ and $n=5$ say, to begin with, to see what is going on. Can you show from this that $\ell_{n}=f_{n}+f_{n-2}$?

$$
\ell_{n}=\ell_{n-1}+\ell_{n-2}, \quad n \geq 3:
$$

a similar relation to the one satisfied by the f_{n} (and by the Fibonacci numbers).
Start by drawing the 4-necklaces and divide into two types, as follows. The first tile is the one covering the cell marked 1 . The last tile is the tile immediately anticlockwise from the first tile. Now divide the 4-bracelets into (i) those for which the last tile is a square (how many of these?) and (ii) those for which the last tile is a domino (how may of these?). You might find that this fits well with the above formula!
Maybe the same idea works for $n=5$? in general?

4.

(This is a bit of algebra.)
From Problem 2 it is also possible to deduce that

$$
\ell_{n}=\ell_{n-1}+\ell_{n-2}, n \geq 4
$$

Apply the formula of Problem 2 to ℓ_{n}, ℓ_{n-1} and ℓ_{n-2} and use the property of the numbers f_{n}, namely $f_{n}=f_{n-1}+f_{n-2}, n \geq 2$. You can also deduce the formula above for $n=3$ separately.)

Explain why f_{n+1} also counts the number of binary sequences of n 0 s and 1 s ('binary n-tuples') in which there are no two consecutive Os.

Look at the case $n=3$, so the claim is that the count of tilings of a 4×1 board is the same as the count of binary 3-tuples where there are no two consecutive 0 s. Try associating a square with 1 and a domino with 01. (This doesn't quite work but it is close. You can also use 'breakability' as in Problem 1.)

Similarly f_{n+1} counts the number of subsets of $\{1,2, \ldots, n\}$ (including the empty set $\}$!) which do not contain two consecutive whole numbers.

For example, for $n=3$ these subsets are $\},\{1,3\},\{1\},\{2\},\{3\}$, five in all.

