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Find the five ways in which this 4 × 1 board can be tiled with
squares and dominoes.

How many end in a square?

How many end in a domino?

Write fn for the number of ways to tile a n × 1 board with squares
and dominoes.

So why is f4 = f3 + f2?
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Why will the same work to show that

fn = fn−1 + fn−2 (n ≥ 3) ?

What are f1 and f2?

Write down f5, f6, f7, f8

Just for luck we’ll define f0 = 1. Then fn = fn−1 + fn−2 works for
n = 2 too!

(The connexion with Fibonacci numbers Fn is that
fn−1 = Fn, n ≥ 1.)
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Now consider this 6 × 1 board

Suppose we want to tile it with squares and dominoes using at

least one domino.

How many ways?

Now let’s count them a different way. Can someone explain why

the number of ways is also

f4 + f3 + f2 + f1 + f0 (remembering f0 = 1)?

(Think of where the last domino is placed!)

So
f4 + f3 + f2 + f1 + f0 = f6 − 1.



The same argument proves this interesting

Theorem For any n ≥ 0

fn + fn−1 + fn−2 + . . . + f0 = fn+2 − 1.

This is an example of a theorem which can be proved by counting
the same things in two different ways.



Now by considering tilings of a 2n × 1 board using at least one

square see if you can understand why

f5 + f3 + f1 = f6 − 1

(look at the position of the last square!)
and more generally why

f2n−1 + f2n−3 + . . . + f3 + f1 = f2n − 1,

with just the odd numbers appearing on the LHS.



A similar idea is tiling of circular bracelets such as this 6-bracelet:

1

with ‘curved squares’ and ‘curved dominos’. We always call the
first cell from the top towards the right ‘Cell 1’. It might be
covered by a curved square or, in two ways, by a curved domino.

Write `n for the number of ways for an n-bracelet.



A similar idea is tiling of circular bracelets such as this 6-bracelet:

1

with ‘curved squares’ and ‘curved dominos’. We always call the
first cell from the top towards the right ‘Cell 1’. It might be
covered by a curved square or, in two ways, by a curved domino.

Write `n for the number of ways for an n-bracelet.

Find the seven ways in which a 4-bracelet can be tiled (`4 = 7).

1

(These numbers are called Lucas numbers.)



1.

f 2
n

+ f 2
n+1 = f2n+2

Look first at the case n = 2 : f 2
2

+ f 2
3

= f6.

Consider the middle point of the 6× 1 board. There are two cases:
(i) there is a domino across this place, (ii) there is no domino
across this place: the tiling is ‘breakable’ at the middle.

Does this idea work for n = 3 : f 2
3 + f 2

4 = f8?

In general, consider the middle point of the (2n + 2) × 1 board,
that is the right-hand end of the (n + 1)st cell of the board, which
is a distance n + 1 from the left-hand end of the board. There are
two cases: (i) there is a domino across this place, (ii) there is no
domino across this place: the tiling is ‘breakable’ at the middle.



2.

`n = fn−1 + 2fn−2, n ≥ 2

Split the tilings of an n-necklace into (i) those for which the tile
covering Cell 1 is a square, (ii) those for which the tile covering
Cell 1 is a domino.

Look at say n = 4 and n = 5 say, to begin with, to see what is
going on. Can you show from this that `n = fn + fn−2?



3.

`n = `n−1 + `n−2, n ≥ 3 :

a similar relation to the one satisfied by the fn (and by the
Fibonacci numbers).

Start by drawing the 4-necklaces and divide into two types, as
follows. The first tile is the one covering the cell marked 1. The
last tile is the tile immediately anticlockwise from the first tile.
Now divide the 4-bracelets into (i) those for which the last tile is a
square (how many of these?) and (ii) those for which the last tile
is a domino (how may of these?). You might find that this fits well
with the above formula!

Maybe the same idea works for n = 5? in general?



4.

(This is a bit of algebra.)

From Problem 2 it is also possible to deduce that

`n = `n−1 + `n−2, n ≥ 4.

Apply the formula of Problem 2 to `n, `n−1 and `n−2 and use the
property of the numbers fn, namely fn = fn−1 + fn−2, n ≥ 2. You
can also deduce the formula above for n = 3 separately.)



5*.

Explain why fn+1 also counts the number of binary sequences of n

0s and 1s (‘binary n-tuples’) in which there are no two consecutive
0s.

Look at the case n = 3, so the claim is that the count of tilings of
a 4 × 1 board is the same as the count of binary 3-tuples where
there are no two consecutive 0s. Try associating a square with 1
and a domino with 01. (This doesn’t quite work but it is close.
You can also use ‘breakability’ as in Problem 1.)



6*.

Similarly fn+1 counts the number of subsets of {1, 2, . . . , n}
(including the empty set { } !) which do not contain two
consecutive whole numbers.

For example, for n = 3 these subsets are { }, {1, 3}, {1}, {2}, {3},
five in all.


