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1 Here’re the Instructions

How to Solve a Cubic of the Form x3 + ax + b = 0

1 Get a blank sheet of paper.

2 Fold it vertically and horizontally several times to create a grid.

3 It is helpful but optional to markone horizontal line and one vertical line as
your axes and mark them with increments of 1.

4 With the axes you have made mark the line y = −1 and the point (0, 1) and
label them both A.

5 Also mark the line x = −b and (b, a) and label them B.

6 Now find a way of folding the sheet that simultaneously folds the point A on
to the line A and the point B on to the line B.

7 The gradient of the fold line you have found is a solution to the cubic equation.
(If there are n solutions to the cubic equation then there are n folds that
you can find.)

Two good examples to try are x3 + x − 2 = 0 (because we already know
the one solution that this has) and x3 − x = 0 (because this has three distinct
solutions).

How to Solve Cubics of the Form x3 + αx2 + βx + γ = 0

You can solve equations of this form by using the identity

x3 + αx2 + βx+ γ = (x+
α

3
)3 + (β − α2

3
)(x+

α

3
) + (γ +

2α3

27
− αβ

3
)

To elaborate, given a cubic of form x3 +αx2 + βx+ γ = 0 a solution can be
found by changing the variable to y = x + α

3 ; the equation then becomes one
of the form y3 + ay + b = 0 which we already know how to solve; therefore, the
y-value can be found using the above method and the x-value can be found by
using x = y − α

3 to convert the solutions of the equation back.
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2 First thing’s first. . .

A very important tool in analysing the geometry of folding is to look at the
envelope of folds in a certain situation. You’re not expected to know what an
envelope is and we will describe it when it becomes important.

The crucial experiment is

1 Start off with a sheet of unmarked paper (as always!);

2 mark a line and point (not on the line) on the paper;

3 now fold the point on to the line.

That is, find a way of folding the paper so that in a single fold the point
ends up on top of the line. Now, the crucial step in this experiment is

4 Repeat step 3.

It is obvious that there is an infinite set of ways to fold the point on to the
line. However, as you create more and more creases in the paper it becomes
clear that the folds seem to trace out a curve. After some strategic folding you
should have something that looks like the image below.

It turns out that, as the number of lines tends to infinity, the border that I
have emboldened in the above picture does indeed tend to a curve. This curve
is called the envelope of the lines1 and refers to any akin phenomenon. You may
recognise the type of curve this particular envelope is.

To demonstrate this I have written a computer program in the F# program-
ming language which shows how the folds on a theoretical indestructable sheet
look. The pictures below were produced with it and the numbers below indicate
the number of folds the computer program drew to produce it.

1presumably because the curve envelopes the set of lines – in a sense.
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It can be proved (see below) that this curve is Quadratic, that is, if the line
is horizontal (as above) then it can be written in the form

y = ax2 + bx+ c

In fact, if the point you marked has coordinates (0, 0) and the line has
equation y = a then the equation of the envelope is

y =
−1
2a
x2 +

1
2
a

Formal

A-Level Module C1/2
Firstly, we note that the envelope of a set of lines is a curve that is tangent

to every single line. This may sound like a jump but if you look at the pictures
above and think about it, we knew this all along. We described the envelope as
the curve outlined by the lines; for it to be outlined it must ‘only touch’ every
line once, and therefore every line is a tangent to it (because the tangents are
exactly those lines which ‘only touch’ the curve. So the kernal of this proof will
prove exactly that every line is a tangent to the curve.
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Now, if we begin with a point (0, 0) and a line y = a then we can create a
fold that folds the point (0, 0) on to any given point of the line. So let us pick
a point to fold to and call it (ψ, a).

We name the segment between (0, 0) and (ψ, a), l1. Observe that the fold
line that folds (0, 0) to (ψ, a) is the perpendicular bisector of l1 and name it l2
(ie. l2 cuts l1 into two equal segments – and is therefore a bisector – and is at
right angles to it – and is therefore perpendicular). As l1 has gradient a

ψ thence
l2 has gradient −ψa .

We now know l2’s gradient and we also know that it passes through the
midpoint of l1 (as it is a bisector) which is (ψ2 ,

a
2 ). hence the equation of the

line is

y − 1
2
a =

−ψ
a

(
x− 1

2
ψ

)
ay − 1

2
a2 = −ψx+

1
2
ψ2

Now, what we wish to prove is that this line is tangent to the curve y =
−1
2a x

2 + 1
2a no matter what the value of ψ is. To do this we solve the formula

for the line and curve as simultaneous equations and find that there is exactly
one for every value of ψ. We do this by substituing the equation for the curve
into that of the line:

a

(
−1
2a
x2 +

1
2
a

)
− 1

2
a2 = −ψx+

1
2
ψ2

−1
2
x2 +

1
2
a2 − 1

2
a2 = −ψx+

1
2
ψ2

−1
2
x2 + ψx− 1

2
ψ2 = 0

x2 − 2ψx+ ψ2 = 0

and because the descriminant is (−2ψ)2− 4ψ2 = 0 we have just proved that
the curve is tangent to every line2.

2The eagle eyed reader may notice that this argument does not hold for a = 0 because
this implies division-by-zero; however, adding the trivial proof that it holds for this case too
rectifies the problem but is omitted here.
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Finally, the proof may be completed by proving that the quadratic is the
only such envelope (otherwise we have not proved that the curve we recognise
in the images above is the quadratic we have found); however, this can be done
by various methods (the best of which is probably to prove that there is only
one point on each line exposed to the open region above that therefore border
the curve); however, this level of rigor is too far to bother with for now.

3 Okay, so what next?

Now that we know that the envelope of fold lines from a point to a line is
describable by a quadratic, we can look at folding geometry in a very different
way; and the problem of solving cubics is only one such problem made easier by
this.

To explore this it is necessary to note what the parabola (ie. the type of
quadratic curve we are dealing with) means in this case: it is the curve that
every fold is a tangent to – this is very important.

Axiom 6 of the Huzita system of Axioms is that

Given two points P1 and P2 and two creases L1 and L2, a new crease
can be folded such that it folds P1 into L1 and P2 into L2 if this is
possible.

It is helpful to try this with a sheet of paper because until then the axiom
itself is largely obscure. Viewing Axiom 6 in terms of fold envelopes we find
that we have two fold envelopes (one for each paired point and line) and that if
there is a fold as described in the axiom then then this fold must be a tangent
to both envelopes. Then we can rephrase the axiom as follows.

Given two parabolas (constructed as fold envelopes) we can con-
struct a simultaneous tangent if it exists.

It is interesting to note at this point that work on Bezout’s Theorem assures
us that there can be no more than 3 simultaneous tangents; hence, 3 folds. This
is one of the wonderful things about mathematics: when proving the theorem
Bezout3 was looking at the problem of conics completely unaware that years
later his theorem would say something very important about folding paper!

4 Go on?

This section will be mostly algebra and requires basic A-Level mathematics
(specifically Differentiation) but for those who haven’t that I will now provide
a schematic view of what is going on.

It turns out that when trying to solve the problem of finding simultaneous
tangents to parabolas it all boils down to sovling a cubic equation in which
the unknown is the gradient of the simultaneous tangent (which is all that is
described below). Now, if we want to solve a cubic equation by paper folding
what we do is work backwards to find the parabolas that we need to find a
simultaneous tangent to; then we work backwards further to find the pair of

3I assume this was their name.
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points and lines that generates these parabolas; and then find the simultaneous
tangent then by simply folding as described above point-to-line and point-to-
line simultaneously. Then, because the fold we have made solves the problem of
folding it also solves the equivalent problem of solving the cubic. This is exactly
why the method of solving a cubic works.

Formal

Basic A-Level. Differentiation.
The most difficult part of deriving the method is to pick the right parabolas

to begin with. The best selection I have seen uses

y =
1
2
x2 and (y − 1

2
a)2 = 2bx (1)

Then, we wish to find algebraically a simultaneous tangent meeting the first
curve at (x1, y1) and the second at (x2, y2) and having gradient µ.

Differentiating the equations respectively gives

dy

dx
= x and 2(y − 1

2
a)
dy

dx
= 2b (2)

and substituting in the points above where dy
dx = µ gives

µ = x1 and (y2 −
1
2
a)µ = b (3)

whereas substituting instead simply the points (x1, y1) and (x2, y2) into (1) gives

y1 =
1
2
x2

1 and (y2 −
1
2
a)2 = 2bx2 (4)

but also, because the tangent passes through (x1, y1) and (x2, y2),

µ =
y2 − y1
x2 − x1

(5)

and then to eliminate x1, y1, x2, y2 we substiute in (3) and (4) into (5) give

µ =
b
µ + 1

2a−
1
2x

2
1

(y2− 1
2a)

2

2b − µ

=
b
µ + 1

2a−
1
2µ

2

( b
µ + 1

2a−
1
2a)

2

2b − µ

=
b
µ + 1

2a−
1
2µ

2

b
2µ2 − µ

therefore

µ(
b

2µ2
− µ) =

b

µ
+

1
2
a− 1

2
µ2

b− 2µ3 = 2b+ aµ− µ3
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and so the cubic we are solving by finding the simultaneous tangent to the
parabolas written above is

µ3 + aµ+ b = 0

and that is that4.
Well, almost.
In fact, this shows us what parabolas we need to find a simultaneous tangent

to to solve the cubic x3 + ax + b = 0 but does not show us pair of lines and
points we need to fold to find the simultaneous tangents!

To do this, simply translate and reflect the formulae we found in our dis-
cussion of envelopes to show that y = 1

2x
2 is generated by folding (0, 1

2 ) on to
y = − 1

2 ; and (y − 1
2a)

2 = 2bx is generated by folding ( 1
2b,

1
2a) on to x = − 1

2b.
The final step is then to simply drop all the fractions: this isn’t as silly as

it first sounds because if we multiply all the coordinates by 2 (and so kill every
1
2 ) then the gradient of the line will be exactly the same.

5 Even Further!?

One of the other things that this leads to is the problem of trisecting the angle.
This is based on the following identity

tan 3θ =
3 tan θ − tan3 θ

1− 3 tan2 θ

which we can prove using the double angle formula

tan(θ + φ) =
tan θ + tanφ

1− tan θ tanφ

by writing

tan 3θ = tan(2θ + θ)

=
tan 2θ + tan θ

1− tan 2θ tan θ

=
2 tan θ

1−tan2 θ + tan θ

1− 2 tan θ
1−tan2 θ tan θ

=
2 tan θ + (1− tan2 θ) tan θ

(1− tan2 θ)− 2 tan2 θ

=
3 tan θ − tan3 θ

1− 3 tan2 θ

This can be rewritten as

tan3 θ − 3 tan 3θ tan2 θ − 3 tan θ + tan 3θ = 0

which becomes more useful for our purposes if we write t = tan θ and u = tan 3θ;
hence, t3 − 3ut2 − 3t + u = 0, which is a quadratic in t which we can solve for
any given u, but the question is “why would we want to?”

4As before there are quite a few division by zero problems here and there but the best way
to solve that problem is to ignore it.
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The answer is elaborated by the following reasoning, illustrated by the pic-
ture. We wish to trisect an angle between lines L1 and L2 (ie. the angle between
L1 and L2 is 3θ and we want to find the line L such that the angle between L
and L2 is θ). If we create a new line K at any point which is perpendiculuar
(at right angles) to L2 then we create a right-angled triangle5.

Now, we can call the length of the L2 side of the triangle L length. Then the
length of the K side is u = tan 3θ. We then know that if we attempt to solve
the above for t = tan θ that in the process we will create a fold-line of gradient
t, which is therefore parallel to the line L we want!

We can then create a line parallel to this which passes through the point O
(the intersection of L1 and L2), ie. the line L itself, using the following method:
call the line with gradient t we have generated T ; find the fold that passes
through O and is perpendicular to T ; then find the fold that passes through O
and is perpendicular to the fold we have just created. This final fold is exactly
L and both of the two intermediate folds can be created under Axiom 4 of the
Huzita system of axioms.

6 Comparison with CS-Geometry

CS (Compass and Straightedge)-Geometry is exactly the original geometry of
Euclid. Where in PF (Paper Folding)-Geometry anything is possible that can
be folded (loosely speaking), in CS geometry anything is possible that can be
created with a compass and completely unmarked straightedge.

The two operations described above (solving the general cubic and trisecting
the general angle) are both impossible in CS-Geometry6 and the obvious ques-
tion is “does there exist a construction possible in CSG but impossible in PFG?”

5This is made possible by axiom 4 of the Huzita system of axioms
6The proof of this wonderful and well-known fact is unknown to the author who thinks

it may be based on Galois Theory but is sure the interested reader will enjoy researching it
further.
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The answer is “No”; that is, every single thing possible in CSG is possible in
PFG; that is, PFG is a stronger Geometry.

It is interesting to observe that the Greeks (who Axiomised CSG over the
course of many lifetimes – a work that reached rigor with Euclid’s Elements)
picked a weak Geometry and that mathematics may have been very different
had they picked the stronger PFG geometry. Possibly mathematics would not
be so advanced now: the PFG Axioms contain no explicit formulation of the
6th Euclidean Axiom, the discomfort over which provoked the investigation
of Hyperbolic and Elliptical Geometry; and the fact that certain unexpected
are impossible gave Galois Theory something to sink its teeth into in the first
instance, and possibly provided some motivation for its development; but this
is idle speculation truthfully.

7 Further Reading

This handout gets you off to a very good start but there is a lot of material on
the internet to explore. This section is to give you a few clues on how to go
about that.

The mathematics of Paper Folding (or Origami) was advanced when Huzita
(whom I have mentioned once previously in passing) broke down every possible
way of folding paper into just six unique operations that he thought could be
combined to produce every possible fold. In fact, he was wrong, but not far off:
he missed just one fold, which makes seven, and this was discovered recently by
Hatori. Together the seven folds are called the Huzita-Hatori System of Axioms.
There is more about this on www.cut-the-knot.org7 (search for Origami and
Paper Folding). However, it is only fair to say that the Huzita-Hatori Axioms
are just the most popular of several systems describing Paper Folding.

Huzita lived an interesting life aside from his mathematics and a biography
of his life (Google it!) is worth a read.

Finally, if you wish to know more about CS-Geometry then there is a wealth
of information on the internet that is only a Google away with some simple and
many difficult proofs that trisecting the angle is impossible with CS.

7www.cuttheknot.com is also a mathematical site: it helps people divide by 2.
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