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Matrices are a bit like coordinates (eg. (6,4) ) or vectors (eg.
5

1

−� �
� �
� �

) in that they are an 

array of numbers. For example:
5 3 2

1 5 0

� �
� �−� �

 is called a 2 3×  matrix. But matrices can 

be of any size. 
  
Matrices can be added and subtracted naturally: for example 

1 5 3 2 1 3 5 2 4 7

8 7 11 0 8 ( 11) 7 0 3 7

+ +� � � � � � � �
+ = =� � � � � � � �− + − + −� � � � � � � �

 

The result is always a matrix the same size as the two (or three or any number) added 
together and each element (each number) is just the sum of the two in the same place 
as it. 
  
Similarly for subtraction: for example: ( ) ( ) ( ) ( )4 7 2 3 4 2 7 3 2 4− = − − = . 

  
You can multiply any matrix by a number: you just multiply every element by it, eg. 

5 2 2 5 2 2 10 4
2

4 1 2 4 2 1 8 2

× ×� � � � � �
= =� � � � � �× ×� � � � � �

 

 

The zero matrix is a square matrix with 0’s in every position, eg. 
0 0

0 0

� �
� �
� �

, 

0 0 0

0 0 0

0 0 0

� �
� �
� �
� �
� �

. It is called the zero matrix because it acts just like a zero. For instance, 

looking addition and multiplication (by a number), if we label a zero matrix by 0  then 
for any other matrix (of the same size) M  then + =M 0 M  and for any number λ  
then λ =0 0 . We will see a little more of this matrix later 
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1. Find 
3 5 1 0 7 5 10 2

2 6 0 2 1 6 2 3

−� � � �
+� � � �

� � � �
 

2. If 
7 1 4 3

,
0 2y x

� � � �
= =� � � �−� � � �

A B  then find , ,x y z if  



27
5

10 18

z� �
+ = � �

� �
A B  and 

10 1
2

2 19

−� �
− = � �− −� �

A B . 

3. How many possible pairs of matrices ,x y  (with only whole number elements 

above zero) exist such that ( )2 10+ =x y 7 . 



The product has the height of the 
first and the width of the second. 
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Two matrices can also sometimes be multiplied together. For example: 

2 2

3
3

1 2 1
1 0 2

4 3 0
2 3 5

0 1 5

−� �
� �� � � �� �=	 
� � � �� �
� � � �� �� �

� � �����
�����

 

  
To find the element on the first ( n th) row and first ( m th) column, you look at the 
numbers in the first ( n th) row of the first matrix and the first ( m th) column of the 
second: you multiply the first of each of the row and column together, and then the 
second and then the third, and then add these together: 

� �
1 2 1

(1 1) (0 4) (2 0)1 0 2
4 3 0

2 3 5
0 1 5

� − �
× + × + ×� � � �� �=� � � �� �

� �� �� �
� �

� �
� �
� �
� �
� �
� �
� �

  

1 2 1
1 0 2 1 1 0 4 2 0 1 2 0 3 2 1 1 ( 1) 0 0 2 5 1 4 9

4 3 0
2 3 5 2 1 3 4 5 0 2 2 3 3 5 1 2 ( 1) 3 0 5 5 14 18 23

0 1 5

−� �
× + × + × × + × + × × − + × + ×� � � � � �� �= =� � � � � �� � × + × + × × + × + × × − + × + ×� � � � � �� �

� �

 

This may seem a strange way to multiply, but there’s a very good reason for it, which 
we will look at later. 
 
Notice that any product of a matrix and the zero matrix is the zero matrix, just like the 
zero of numbers. 
 
Also, there is another special square matrix called the identity or unit matrix that 
works like the number 1 for multiplication: any matrix multiplied by it is unchanged. 

This matrix has 1’s along the main diagonal and 0’s everywhere else, eg. 
1 0

0 1

� �
� �
� �

, 

1 0 0

0 1 0

0 0 1

� �
� �
� �
� �
� �

. For example, 
1 0 5 1 1 5 0 3 1 1 0 ( 9) 5 1

0 1 3 9 0 5 1 3 0 1 1 ( 9) 3 9

× + × × + × −� �� � � � � �
= =� �� � � � � �− × + × × + × − −� �� � � � � �

. 
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1. Find 
5 7 1 0 6

1 6 3 1 2

� �� �
� �� �
� �� �

. 

2. Where 
91 0 0

,
0 8 0

x

y

� � � �
= =� � � �−� � � �

C Z  find ,x y  where 2 6− − =Z Z C 0  

( =2Z ZZ ). 
3. *When can two matrices be multiplied? 
4. *How could you write the system of equations: 3 5 17x y z+ + = , 

6 4 1x y z− − = , 6 18 4 32x y z− + + =  as =AB C  where ,A C  are constants? 

You do likewise 
for every 
element… 
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In a space, the coordinates ( , )x y  can be treated as 2 1×   matrices: 
x

y

� �
� �
� �

. 

When these are multiplied by a constant matrix, the space is linearly transformed. For 
example the following transformation is a shear: 

 
Linear transformations do not simply move vertices and join up the lines between 
them. Linear transformations transform every single infinitesimal point in space but 
you only need to find the positions of the vertices (because if you transform all the 
points on a line you get another line). 
 
There are other shortcuts: linear transformations never move the point (0,0)  so you 
don’ t need to work out where this point is every time; if there are two parallel lines 
originally then after the transformation they will remain parallel. So using these two 
shortcuts the above shear is found far quicker: 
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1. Try working out the following transformations of the unit square (draw them 
on the same graph) and try stating what type of transformation they are: 

 

 1 1

2 2
1 1

2 2

� �−� �
� �
� �
� �
� �

 
2 0

0 2

� �
� �
� �

 
1 0

0 1

−� �
� �
� �

 

 
 
 
 
 
 
 
 
 



2. a). Transform the unit square with 
2 1

.
1 1

� �
= � �−� �

A  

b). Transform the resultant shape with 
0.75 0.5

1 1

� �
= � �
� �

B  

*c). Transform the unit square with BA . What do you notice? 
3. *Prove that a Linear Transformation transforms lines into lines. (Also, prove 

that a pair of parallel lines remains parallel after a transformation.) 
4. *The definition of a Linear Transformation is any function ( )T x  such that 

( ) ( )λ λ=T x T x  and ( ) ( ) ( )+ = +T x y T x T y . Show that 

x x

y y

� �� � � �
= +� �� � � �

� � � �� �
T A B  is only a linear transformation if 

0

0

� �
= � �
� �

B  (the zero 

matrix). (Hint: you could start off by proving that 
0 0

0 0

� � � �
=� � � �

� � � �
T .) 
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The Determinant of a square matrix X  is written  or detX X  and for a 2 2×  matrix 

it is: 
a c

ad bc
b d

= − . For 3 3×  matrices, 

a b c
f g e g e f

e f g a b c
i j g j h i

h i j

= − + . 

Determinants are defined for any n n×  matrix in a similar way: for any n n×  matrix, 
 

11 12 13 1
22 23 2

21 22 23 2
32 33 3

31 32 33 3 11

2 3
1 2 3

n
n

n
n

n

n n nn
n n n nn

x x x x
x x x

x x x x
x x x

x x x x x

x x x
x x x x

=

�
�

�
�

� �
� � � �

� � � � �
�

�

 

11 12 13 1
22 23 2 21 23 2

21 22 23 2
32 33 3 31 33 3

31 32 33 3 11 12

2 3 1 3
1 2 3

n
n n

n
n n

n

n n nn n n nn
n n n nn

x x x x
x x x x x x

x x x x
x x x x x x

x x x x x x

x x x x x x
x x x x

= −

�
� �

�
� �

� �
� � � � � � � �

� � � � �
� �

�

 

11 12 13 1
22 23 2 21 23 2 21 22 2

21 22 23 2
32 33 3 31 33 3 31 32 3

31 32 33 3 11 12 13

2 3 1 3 1 2
1 2 3

n
n n n

n
n n n

n

n n nn n n nn n n nn
n n n nn

x x x x
x x x x x x x x x

x x x x
x x x x x x x x x

x x x x x x x

x x x x x x x x x
x x x x

= − +

�
� � �

�
� � �

� �
� � � � � � � � � � � �

� � � � �
� � �

�

 

Once this is completed you have a sum that contains ( 1) ( 1)n n− × −  determinants so 
you can just repeat this until you get to a (very long) sum of 2 2×  determinants which 
can simply be worked out. However, this method is very laborious and it is easy to 
make a mistake so we’ ll meet one later which is much better.  
 
Determinants have many remarkable qualities, a few of which are: 

1. If the matrix is transposed (ie. reflected along is diagonal, eg. 3 2 1 3 4 5

4 3 2 2 3 4

5 4 3 1 2 3

� � � �
� � � �→� � � �
� � � �
� � � �

) 

the determinant is unchanged. 
2. Swapping two columns (rows) multiplies the determinant by –1. 
3. Multiplying any column (row) by λ  multiplies the determinant by λ (@). 
4. Adding any column (row) to another column (row) leaves the determinant 

unchanged (@). 
5. The determinant of any unit matrix is 1(@). 

 
There are many others (especially one you’ ll find yourself later) but these are the 
basics. In fact, the determinant is the only function possible that fulfils the properties 
marked with @’s. 
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Each of these determinants has been changed (without changing its value) using a 
property above for each arrow. Try and find the numbers that go in each determinant 

To get the first term you take the first 
element in the first row and multiply 
it by the determinant of the matrix 
after the first row and first column 
have been removed. 

To get the second term you do the 
same sort of thing: you take the 
second element in the first row 
and then multiply it by the 
determinant where you cross out 
the row and column that it’s in, 
but the second term is negative. 
And repeat for every element along 
the top row, alternating between 
negative and positive terms. 



and find the property used to change it and write it in the arrow. Some of the numbers 
in the determinants have been given as clues. 

1 3 2

1 2 1

4 0 3

    3 2

2

    

7

 

Now, each arrow represents two changes using one of the properties above. 

1 6 0 3

1 0 1 0

2 2 0 2

3 0 4 5

− �������� ���� ����

3

1

1 4

− �������� ����

3 0 4 10

1 3 0 6

����

Now, each arrow only represents one change again but each property may only be 
used once: 
 

 

1 2 0

3 4 1

0 5 2

    

2

2

   

7

3

5

−                
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You might be wondering why we would ever be interested in determinants (especially 
when they can be so laborious to calculate!) but there are many very good reasons, 
we’ ll focus on one… 
 

Say a space is transformed by the matrix 
a c

b d

� �
= � �
� �

T  then 
0 0

,
0 0

� � � �
=� � � �

� � � �
T  

1 0
, ,

0 1

a c

b d

� � � � � � � �
= =� � � � � � � �

� � � � � � � �
T T and 

1

1

a c

b d

+� � � �
=� � � �+� � � �

T ; hence the unit square becomes… 

 
This shape can be split into four equal sections (as shown; the area of one is labelled 
X). Then the area of the whole is  

 
We can find the area of the shape by 
finding the areas of , ,X Y Z  and 
taking twice their sum from the area 
of the large square W  (that meets 
the shape at the bottom-left and top-
right): 

( )

( )( )

( ) ( )

2

1 1
2

2 2

2

a c b d ab bc cd

ab ad bc cd ab bc cd

ad bc

− + +

� �= + + − + +� �
� �

= + + + − + +
= −

W X Y Z

Notice that 
a c

ad bc
b d

= − , ie. the determinant of a transformation matrix is the area 

of a transformed unit square. Or rather, more generally, (since the area of the unit 
square is 1) the determinant is the ratio through which every shape’s area is multiplied 
when it is transformed. 
 
More impressively, this is not just true for 2-dimensions: given 3D (or 4D or 5D or 
nD) spaces this still works (but the proof of this is a little more involved); ie. in 3D, 
the determinant gives the volume of the unit cube after transformation. 
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1. For each of the transformed unit squares you have drawn above, try and 
calculate their area both using determinants and not. 

2. *With your answer to 2(c) (of Linear Transformations) above in mind, why is 
it true that =AB A B . 

3. *The inverse of a matrix X  is a matrix −1X  such that −1X X is the identity 
matrix. Using (2), when can a matrix not be inverted (ie. when is it impossible 
to find an inverse). 



4. *What happens to 2 dimensional space transformed by a matrix T  if 0=T ? 

(There are two possibilities. Now, can you go further and find the n  
possibilities for an n  dimensional space?) 
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When using large matrices the determinant can be very difficult to find because the 
process is long and it is very easy to make a mistake (not to mention the waste of 
paper). So, there is a quicker way to do it: pivotal condensation. For an example: 
 

� �1 2 3 01 2 3 0

0 3 1 2 0 3 1 2

1 0 1 1 1 0 1 1

1 2 3 0 1 2 3 0

=
� �
� �
� �
� �
� �
� �
� �

 

� �1 2 3 0
3 1 2

0 1 3 2 0 1 1 3 0 1 2 0 0 1
2 2 1

11 1 0 2 1 1 1 3 1 1 1 0 1
1 0 0

1 1 3 2 1 1 3 3 1 1 0 0 1

× − × × − × × − ×
= − −

× − × × − × × − ×
× − × × − × × − ×

� �
� �
� �
� �
� �
� �
� �

 

 
Finally, the singled out columns are removed and the determinant is divided by the 

pivot to the power N – 2, where the matrix is N by N, then  multiplied by ( )1
m n+−  

where m and n are the ‘coordinates’  of the pivot in the matrix (the top left being 
m=n=1). If the determinant isn’ t yet small enough (ie. two by two) then just repeat 
the process.  Obviously best to choose a 1 as pivot. 
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1. To show how useful pivotal condensation is, try using it to find the following 
using the marked pivot for the first time: 

��

� �1 7 0

2 3 1

4 2 2

−
, � �

0 2 2

2 1 1

2 3 1

 

�� � �

2 2 3 2 1

2 0 1 3 2

1 1 2 0 1

3 2 3 1 2

1 0 1 2 0

 

2. *Why does this work? 

Firstly, a pivot is chosen (in this case the 
top left element) and its row and column 
are singled out. If for an element 

x, the pivot is l, 
the singled-out 
element in the 
same row 
(column) is r (c), 
then that element 
is replaced with 
lx–rc. 


