EXPECTED VALUES - APPENDIX - SOME SERIES

Binomial series: for $(1+x)^{n}$ where \mathbf{n} is an integer $\geq \underline{0}$

$\mathrm{n}=0 \quad(1+\mathrm{x})^{0}=1$
$\mathrm{n}=1 \quad(1+\mathrm{x})^{1}=1+\mathrm{x}$
$\mathrm{n}=2$ multiply above by $(1+\mathrm{x})$

$$
\begin{aligned}
(1+x)^{2} & =(1+x)(1+x) \\
& =1+x+x+x^{2}=1+2 x+x^{2}
\end{aligned}
$$

$\mathrm{n}=3$ multiply above by $(1+\mathrm{x})$

$$
\begin{aligned}
&(1+x)^{3}=(1+x)\left(1+2 x+x^{2}\right) \\
&=1+2 x+x^{2}+x+2 x^{2}+x^{3}=1+3 x+3 x^{2}+x^{3} \\
& \ldots \ldots
\end{aligned}
$$

etc

Geometric series : $(1-x)^{-1}$, where $-1<x<1$

Initially for any x, set
$S_{r}=1+x+x^{2}+x^{3}+\ldots \ldots+x^{r} \quad$ where r is an integer ≥ 0. Refer to this equation as (1).
Multiply above by x
$\mathrm{xS}_{\mathrm{r}}=\quad \mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots \ldots+\mathrm{x}^{\mathrm{r}}+\mathrm{x}^{\mathrm{r}+1}$. Refer to this equation as (2).
Subtract (2) from (1), giving
$\begin{aligned} \mathbf{S}_{\mathrm{r}}-\mathbf{x} \mathbf{S}_{\mathrm{r}} & =\mathbf{1 - \mathbf { x } ^ { \mathrm { r } + 1 }}, \\ \text { ie }(\mathbf{1}-\mathbf{x}) \mathbf{S}_{\mathrm{r}} & =\mathbf{1}-\mathbf{x}^{\mathrm{r}+1}\end{aligned}$
Hence $\mathbf{S}_{\mathrm{r}}=\frac{\left(1-\mathrm{x}^{\mathrm{r}+1}\right)}{(1-\mathrm{x})}$.
For $\mathbf{- 1}<x<1$, let r tend to infinity and S_{r} tend to S.
Thus $S=\frac{1}{(1-x)}=(1-x)^{-1}$
So, when $-1<x<1$, we have $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \ldots$

Negative binomial series : for $(1-x)^{m}$ where $-1<x<1$ and m is an integer <0

```
\(\mathrm{m}=-1 \quad(1-\mathrm{x})^{-1}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\ldots \ldots\) where \(-1<\mathrm{x}<1\)
    multiply above by \((1-x)^{-1}=1+x+x^{2}+x^{3}+\)
```

\qquad
$m=-2(1-x)^{-1}(1-x)^{-1}=\left(1+x+x^{2}+x^{3}+\ldots \ldots\right)\left(1+x+x^{2}+x^{3}+\ldots \ldots\right)$

$$
=1+x+x^{2}+x^{3}+\ldots \ldots
$$

$$
x+x^{2}+x^{3}+\ldots \ldots
$$

$$
\begin{array}{r}
x^{2}+x^{3}+\ldots \ldots \\
x^{3}+\ldots \ldots
\end{array}
$$

$$
\text { So } \quad(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots . \text { where }-1<x<1
$$

By multiplying above $(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \ldots$ we can similarly derive
$m=-3 \quad(1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots \ldots$ where $-1<x<1$

Pascal's Triangle for coefficients in binomial series

With appropriate interpretation the coefficients of powers of \mathbf{x} in the binomial expansions for $(1+x)^{n}$ where n is an integer ≥ 0 can be read horizontally and those for $(1-x)^{m}$ where m is an integer <0 and $-1<x<1$ can be read downhill diagonally.

				1				
			1	1				
		1		2		1		
1		3		3		1		
1	4	6		4		1		

Entries in further rows can be computed as the sum of the two adjacent entries immediately above.

