105

Chords Squared

Here is a circle of radius 1 , with twelve points equally spaced around it, labelled from 1 to 12, as in a clock-face.

The distance between two points of the circle is the length of the chord, or straight line, joining them.

A number, multiplied by itself, is its square.
What is the square of the distance from 12 to 3 ? \qquad
What is the square of the distance from 12 to $6 ?$
What is the square of the distance from 12 to 8 ?
What is the square of the distance from 12 to $10 ?$
Be sure that you can justify every one of these. Two are surely trivial. To answer the other two you will need to use Pythagoras's Theorem.

122

Stepping Stones

Think of these fifteen spots as stepping stones set in a circle in a pond.

Arrange $A, B, C \& D$ on them so that measured the same way round the circle, either clockwise or anticlockwise (it doesn't matter which!):
the distance from N to B is twice that from N to A, the distance from N to C is twice that from N to B, the distance from N to D is twice that from N to C, and the distance from N to A is twice that from N to D ,

A being further from N than any of the others.

140

A Circular Argument

The points $(1,0),(a, b)$ and (x, y) lie on the circle with centre $(0,0)$ and radius 1 , with the angles between adjacent radii equal, as shown in the diagram. Place the equations provided to prove that $x=a^{2}-b^{2}$ and $y=2 a b$.

Since the points (a, b) and (x, y) lie on the circle with radius 1 ,

> and

Also, the mid-point of the line joining $(1,0)$ to (x, y) lies on the line from the origin to (a, b). This is the point $\left(\frac{1}{2}(1+x), \frac{1}{2} y\right)$, so that, evaluating the gradient of the radius in two ways,

But, since $x^{2}+y^{2}=1, y^{2}=1-x^{2}=(1-x)(1+x)$, implying
that \qquad , so that Then, eliminating y,
$\frac{b^{2}}{a^{2}}=\frac{1-x}{1+x}$. Solving for x, using $a^{2}+b^{2}=1$, we find that Moreover, $1+x=2 a^{2}$, implying that $y=(1+x) \frac{b}{a}=2 a b$.

This completes the proof.

Orthogonality

A vector in the (x, y) coordinate plane is an ordered pair of numbers (a, b). This vector determines a point P of the plane, namely the point with x-coordinate a and y-coordinate b . The vector (a, b) is said to represent the point P. The vector $(0,0)$ represents the origin O.

Two vectors, (a, b) representing a point P , and (c, d) representing a point Q, are said to be mutually orthogonal if the line segments OP and OQ form a right angle at the origin.

In that case, by Pythagoras' Theorem, the square of the distance from the point P to the point Q is

$$
\begin{aligned}
& \text { = ... } \\
& = \\
& =|\mathrm{OP}|^{2}+|\mathrm{OQ}|^{2}-2(a c+b d) .
\end{aligned}
$$

But, again by Pythagoras' Theorem, $|P Q|^{2}=|O P|^{2}+|O Q|^{2}$. So the condition for the vectors (a, b) and (c, d) to be orthogonal is that:

Resources: Three formulas and an equation [from templates]

