Codes
Chris Sawer

University of Liverpool Maths Club
http://www.maths.liv.ac.uk/~mathsclub/
29 March 2003

You will almost certainly have used a code today without even realising it. Have you had a
conversation on a mobile ’phone? Sent an e-mail? Typed a letter on a computer and saved it to
disc? Watched digital TV or listened to digital radio? Listened to a CD? Bought an item in a
supermarket which has had a bar code ‘scanned’ at the checkout? All of these things involve
digital data being transferred from one place to another. There are many different ways of doing
this, but none are perfect - there is always the possibility that errors may creep in.

How come, then, when you reload that word-processed letter, that nothing has changed? Why
isn’t there horrendous interference on your mobile *’phone when the signal isn’t very strong? The
answer to these questions is the same - the information has been encoded so that errors can be
detected and, if possible, corrected.

One example of a mathematical code that you might have encountered when ordering a book is
the ISBN number. This is a ten digit number hidden away on the back of almost every book
published nowadays. The first nine digits identify the book uniquely, but the tenth is a ‘check
digit’, calculated from the previous nine.

The check digit is calculated as follows: If the digits are numbered a-bcd-efghi-x, then:
Find y=10a + 9b + 8c + 7d + 6e + 5f + 4¢ + 3h + 2i
Then x =11 — (the remainder when y is divided by 11)

This method is used because it can detect two different types of error:

 If any one of the digits is mis-typed, then x will be different
 If any two of the digits are transposed (swopped over), then x will be different

These are the two mistakes most likely to be made by someone typing in the ISBN number into a
computer. If the calculated x does not equal the x typed in, then the computer will flag up an error
knowing that a mistake has been made somewhere. It does not know where, but this is not too
important since the person typing can simply enter the number again.

We’re going to look at codes used for digital data, that is binary messages which consist entirely
of Os and 1s. In the real world, this is the language used by computers. Various combinations of
Os and 1s represent different things, for example characters in a word-processed document, music
on a Compact Disc, images on the Internet, or even your voice during a mobile *phone call.

In many practical applications of digital data, there are opportunities for errors to creep in to the
messages. For example, the laser in a CD player might misread a O for a 1. Interference or poor
reception may cause your mobile “phone to receive errors. Clearly, these could cause serious
problems, and want to be minimised if at all possible.

In practical applications of digital data, therefore, extra information is added to the message
which in a perfect world wouldn’t be necessary, but is there to help detect and correct errors. The
check digit at the end of an ISBN number is a good example of a code which can detect errors.

In many systems error detection is all that is needed, for example when transmitting data over the
internet, if an error is detected, the receiving computer can ask the computer sending the
information to repeat that particular piece of data. In other systems, however, such as
transmission of data from remote space probes, this is not possible, so sufficient information has
to be included with the data so that a small number of errors can be successfully corrected.

Some terminology I'm going to use:

Message: The original binary data

Codeword: The data together with coding information

Coding function: The rule which enables you to make the codeword from any
given message

To start with, let’s consider a simple binary code. Each message consists of three digits, which
can either be 0 or 1. This means there are a total of eight messages in the code: 000, 001, 010,
100, 110, 101, 011, 111. To make the codeword from each message, add an extra digit on the end
so that the number of 1s in the resulting codeword is even.

Message | 000 | 001 | 010 | 100 | 110 | 101 | o1r | 111

Codeword | 0000 | 0011 | 0101 | 1001 | 1100 | 1010 | 0110 | 1111

This code is called a ‘parity check’. It can detect one error in any given codeword. This is
because if a 0 is changed to a 1 (or vice versa), the number of 1s in the word is no longer even.

The code cannot correct any errors, however. If the word ‘0010’ is received, for example, we
know there is an error, but we don’t know if the intended codeword was ‘0000°, ‘0011°, ‘1010’ or
‘0110’ as all differ from the received word in just one digit.

How then could we make a code that can correct errors? One simple example is to repeat the
message three times. Assuming the same messages as above, the resulting codewords are:

Message |000 |001 |010 | 100 | 110 | 101 |011 | 111

Codeword | 000000000 | 001001001 | 010010010 | 100100100 | 110110110 | 101101101 | 011011011 | 111111111

In this case if the word ‘101101111 is received, we can guess that it should have been
‘101101101’ since this differs from ‘101101101 in just one place. It differs from all of the others
in more than one place.

Of course, the word might have been intended to be ‘111111111’ and two errors have crept in —
but we always assume that the codeword closest to the received word was the one intended. This
is known as the ‘nearest neighbour’ principle.

Mathematically, the number of places in which two words differ is called the distance between
those words. For example, the distance between 100101 and 101111 is 2 since they differ in two
places.

The distance between two words can also be calculated by ‘adding’ the words together but adding
in a rather strange way. The method is called adding modulo two. What this means in practice is
that you line the numbers to be added on top of each other, and apply the following rules to each
column:

0+0=0
1+0=1
0+1=1

1+1=0 <« watch out for this!

You do not carry any digits. For example: 100101
+ 101111
001010

The resulting number in this case has two 1s in it, so we say it has weight two. The distance
between two codewords can be calculated, as here, by finding the weight of their sum.

If you think about it, the distance between codewords has a lot to do with the number of errors
which can be detected or corrected. If all of the codewords are very similar, then the distance
between them will be small, and if a codeword is received with a few errors, it might be the same
as another codeword. If you want to try and correct errors, the codewords need to have an even
greater distance between them so that you can judge which is ‘closest’ to the received codeword,
which may have errors.

In fact, you can work out how many errors a code will detect and correct by calculating the
minimum distance between any two codewords.

The code will detect up to k errors when:
the minimum distance between any two codewords is > k + 1

The code will correct up to k errors when:
the minimum distance between any two codewords is > 2k + 1

But how can we calculate the minimum distance between any two codewords. Well, for a general
code, unfortunately we have to calculate the distance between every pair of codewords, and look
to see which is the minimum. This is extremely tedious, and for the code above (‘tripling’ the
message) involves doing 7+ 6 + 5 + 4 + 3 + 2 + 1 = 28 calculations. The answer turns out to be
3, proving that this code detects up to two errors (since 3 >2 + 1 but 3 <3 + 1) and can correct up
to one error (since 3 >2x1 + 1 but 3 <2x2 + 1).

Is there an easier way? Well, not for all codes, but for certain codes known as group codes, the
minimum distance can be calculated much more easily. A group code is a code in which
whenever you add two codewords (using the method of addition shown above), the result is
always another codeword.

To check that any given code is a group code can be a tedious process - you would have to check
that adding every pair of codewords results in another codeword. However, there is a process for
generating codes which guarantees the result is a group code. It’s called using a generator
matrix. A generator matrix is a rectangular array of Os and s similar to the following:

1001
0101
0011

But how do you find the code using this? Firstly, the number of digits in the original message has
to equal the number of rows in the matrix. The number of columns then determines the number of
digits in the codewords. To find the codeword corresponding to any particular message, you
‘multiply’ it by the above matrix as follows. Place the message to the left of the matrix. The
codeword then consists of the ‘dot products’ of the message and each individual column of the
matrix. This means multiplying the first digit of the message by the top entry in the column, the
second digit of the message by the second entry in the column, and so on, down to the bottom of
the column. Adding all of these results together gives the dot product. Be careful - we are still
working modulo two which means that 1 + 1 =0,s01+1+1=1,1+1+1+1=0,etc.

The following example might help: multiplying the message ‘011’ by the above matrix:
(o1 1)f1001) =7
0101
0011

The first diagram below shows the dot product of the message and the first column of the matrix.
The others show the dot products with the other columns (the relevant one is circled each time):

X
(@1) 1/0)0 1
0 01
0 11
=0x1+1x0+1x0=0 =0x0+ Ix1 +1x0=1
X %X
/_\ // .
(@1 D)1 001 (@1 D)[100
01 1 010
00 1 001
=0x0+ 1x0 + 1x1 =1 =0x1+1x1+1x1=0
Therefore:
(o11)f1001\=(0110)
0101
0011

So the resulting codeword is ‘0110’. In fact, this matrix produces the ‘parity check’ code we saw
earlier. Check this by multiplying some other messages by it and seeing that the result always has
an even number of 1s. When you’ve done this, see if you can have a go at making a matrix for the
other code we’ve looked at (the one which ‘triples’ the message).

As I stated earlier, the minimum distance between codewords is much easier to calculate for a
group code. In fact:

The minimum distance between codewords = the lowest weight of a non-zero codeword
Remember that this is how you work out how many errors the code can detect and correct.

Now, suppose we have received an encoded message with possible errors. We want to decipher
the original message by seeing which codeword each received word is ‘closest’ to. For each
received word we could find the minimum distance between it and each of the actual codewords,
but this is tedious and repetitive. A better way is to form a table called a coset decoding table.
The top row of the table consists of all the codewords that can be generated using the generator
matrix, and the rest of the table consists of all the other possible combinations of Os and 1s which
might be received, each of which is positioned underneath the codeword that it’s closest to.
Constructing this table might seem like a difficult task, but once done, it enables you to find the
corrected version of any received codeword is extremely quickly — it is simply the codeword at
the top of the column containing the received word.

It’s probably easiest to explain this with an example, so, let’s look at the following code:

(1)08(1)(1)1 000 [001 [o10 |01l [100 [101 110 |111
00111 000000001110 [010011 011101 | 100101 | 101011 | 110110 | 111000

G =

1 1
0 0
First, write the codewords as the top row of the table:

000000 001110 010011 011101 100101 101011 110110 111000

For the next row, pick a word with the smallest weight possible that is not already in the table.
We'll start with ‘000001°. Write this under the ‘000000’ column, and calculate the rest of the row
by adding it to the other codewords:

000000 001110 010011 011101 100101 101011 110110 111000
000001 001111 010010 011100 100100 101010 110111 111001

Continue picking words with the smallest weight possible and repeating the above until all words
(2% = 64 in this case) appear in the table:

000000 001110 010011 oO11101 100101 101011 110110 111000
000001 001111 010010 011100 100100 101010 110111 111001
000010 001100 010001 OI11111 100111 101001 110100 111010
000100 001010 010111 011001 100001 101111 110010 111100
001000 000110 011011 o0O10101 101101 100011 111110 110000
010000 011110 000011 001101 110101 111011 100110 101000
100000 101110 110011 111101 000101 001011 010110 011000
001001 000111 011010 010100 101100 100010 111111 110001

Note that there were three choices for the first word in this final row. This is because all the
words in this row contain two errors, and the code can only correct one. Therefore each word in
this row is equally close to several codewords, so there are several choices each time.

Final task: Suppose that a message is encrypted using the following number-to-letter equivalents:

000: E 001: G 010: M 011: O
100: Q 101: R 110: T 111: Y

The code used is as above. The message received is:
101110 100000 011001 011011 001000 110110 111011 110000

There are many errors in this message. Just taking the first three digits of each of the received
words, ie. ignoring the error detection/correction gives the following word: RQOOGTYT

This is clearly wrong. Use the table above to work out what the message should have been.

