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This session will be about drawing lines across a triangle which cut off a certain area.
We’ll begin with some useful results.
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First, write down some formulas for this triangle. They must only mention a and b.

Area of this triangle =
c2 =
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Now write down some formulas for this triangle, this time only mentioning x and y.

Angle θ =
h =
k =
Area of whole triangle =
l =
z2 =
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Now consider this third triangle. Calculate its area and write down the values of the
angles α and φ.

Area of this triangle =
Angle α =
Angle φ =

Our next task is to find the shortest straight line which bisects a right-angled isosceles
triangle like the one above, that is, divides it into two parts of equal area. The two parts
do not have to be the same shape!

We are going to investigate two different possibilities for the line dividing up the
triangle. It could either pass through the hypotenuse and one of the shorter sides, or it
could pass through both of the shorter sides.

Case 1
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zθ

45°

Initially, we’re going to consider when the line bisects the triangle and passes through
the hypotenuse, as in the diagram above. The whole triangle has area 2, so the shaded
area is 1 when the line bisects the triangle.

In this case, the shaded triangle is similar to the one at the bottom of the previous
page, so we can use the formulas worked out there. You should have found that:

Area =
xy
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So, for the shaded area of the triangle above:

xy
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We want to minimise z, that is, make it as small as possible. Again we can use a
formula worked out earlier to help us. You discovered a formula for z2:

z2 = x2 + y2 −
√

2xy

We already know that xy = 2
√

2, therefore:

z2 = x2 + y2 −
√

2xy

= x2 + y2 −
√

2.2
√

2

= x2 + y2 − 4

Although we want to minimise z, and not z2, we can still use this formula. If the
values of x and y are found that minimise z2 = x2 + y2 − 4, then the same values of x
and y will minimise z =

√
z2!

We’re going to look at two different approaches to minimising this formula.

Approach 1

We can use the fact that xy = 2
√

2 to eliminate y from the equation for z2:

y =
2
√

2

x
so y2 =

8

x2

z2 = x2 + y2 − 4

= x2 +
8

x2
− 4

=
(
x− a

x

)2

+ b− 4

where a and b are some constants. You can discover the values of them by multiplying
out this last equation. Write down the coefficient of 1

x2 and the constant coefficient (the
term or terms on the right hand side which do not involve x, y or z).

Coefficient of 1
x2 :

Constant coefficient:

By comparing the coefficient of 1
x2 which you’ve just worked out, and the fact that

in the previous equation the coefficient of 1
x2 is 8, you should immediately be able to

write down the value of a.

a =

Now, using the constant coefficient which you’ve worked out, the value of a which
you’ve just calculated, and the fact that the constant coefficient in the previous equation
is −4, you should be able to calculate b.

−4 =
Therefore b =

3



If you now substitute these values of a and b, you should find that:

z2 =

(
x− 2

√
2

x

)2

+ 4
√

2− 4

How can we find the minimum value of this equation? Well, the squared term is
always going to be positive, no matter what is inside the brackets, so the minimum
value is going to be when the squared term is zero, ie. when x− 2

√
2

x
= 0.

The minimum value of z2 is therefore:

z2 = 4
√

2− 4 = 4(
√

2− 1)

So the minimum value of z is:

z =
√

4(
√

2− 1) = 2
√√

2− 1

You can work out the value of x which gives you this z by using the fact that
x− 2

√
2

x
= 0. The value of y follows immediately from this.

Approach 2

This approach uses the following fact:

(x− y)2 = (x− y)(x− y) = x2 + y2 − 2xy

Therefore:

x2 + y2 = (x− y)2 + 2xy

Write down what happens if you substitute this in our formula for z2:

z2 = x2 + y2 − 4

=

We also know that xy = 2
√

2, so write down what happens if you substitute this in
too:

z2 =

You should have a bracket (x − y)2 plus a constant or constants. The bracket
(x − y)2 ≥ 0 so the minimum value of z2 can be seen immediately to occur when
(x − y)2 = 0, ie. when x = y. From the constant it can be seen that this gives z2 =

4
√

2− 4 = 4(
√

2− 1) and therefore z = 2
√√

2− 1, which is the same result as obtained
by the first approach.

When we know that x = y, you can immediately find x and y from our other
constraint:

xy = 2
√

2

so x2 = y2 =

therefore x = y =

4



Case 2

x

y
z

We haven’t yet considered the case when the line bisecting the triangle passes through
the two shorter sides, and not the hypotenuse, as in the diagram above. Note that the
x, y and z in this diagram are different to those used previously.

The area of the large triangle is 2, and the shaded part is half of this. Write down a
formula in terms of x and y for the area of the shaded part:

so xy =

From Pythagoras’s theorem:

z2 = x2 + y2

We can use a similar trick to that used in ‘Case 1, Approach 2’ above, replacing
x2 + y2 by (x− y)2 + 2xy:

z2 = (x− y)2 + 2xy

But we know that xy = 2, so substitute this in the formula above for z2:

z2 =

Again, (x− y)2 ≥ 0, so the smallest possible value of z2 is 4, ie. z ≥ 2 whichever way
we draw the line across the big triangle’s two shorter sides.

We don’t know yet, however, which approach is shorter. Is 2 > 2
√√

2− 1?
If we assume this is the case, then we can treat the above inequality as an equation,

doing the same operations to both sides, as long as we remember to reverse the inequality
if we multiply or divide by a negative number (which in fact we don’t need to do).

2 > 2
√√

2− 1
> (square both sides)
> (divide both sides by 4)
> (add one to both sides)

You should have ended up with the statement 2 >
√

2. This is clearly true, so our

original statement (2 > 2
√√

2− 1) must also have been correct.
This shows that the first case gave a shorter line, which must be the shortest line to

bisect an isosceles right-angled triangle.
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Some more suggestions

1. Try the same calculation with an equilateral triangle.

2. If a chord joins the point (a, 0) to the point (0, b) and slides, keeping its ends on
the axes, so that its length is fixed, show that the midpoint describes a circle.

3. If the chord moves so that the area of the triangle made by the chord and the
axes is constant, show that its midpoint describes a hyperbola (with equation of
the form xy = constant).

4. Take two very close chords which, as in the last example, cut off the same area.
(So they will join (a, 0) to (0, b) and say (a + h, 0) to (0, b + k) where h and k
are small.) Show that they intersect very nearly at the midpoint of each chord.
We say that the envelope of the chords is the curve traced out by their midpoints,
which is a hyperbola by the previous question.

5. What happens with the intersection of very close chords in Question 2?

6. (Not directly related to the above!) Show that
√

2 +
√

5− 2
√

6 =
√

3. Of course
this is supposed to be exact, not checked with a calculator! Can you find any other
examples like this one?
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