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Geometric Progression

A geometric progression (GP) Is a sequence of
numbers in which any term can be obtained from

the previous term by multiplying by a certain
number called the common ratio.

For a GP:

first term Is denoted by «.
common ratio Is denoted by r.
the nth term is given by ar™1.
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The sum of the first n terms is given by:

a-ar+ar’ 4+ .. 4+ ar™!
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The sum of first n terms of a GP

The sum of the first n terms is given by:

Sn

a-+ar+ar’+ .. +ar"!

1_ n
a( T), r <1,

1l —7
r' —1
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The Sigma Notation

Let
Ui, Ug, Uz. ..., Uy

be the n terms of the sequence.

The sum of the first n terms,
S, = Ui+ us+us....+ u,
— Z ’UIT
r=1



Some Important



Some Important Formulae

The sum of the first n natural numbers,



Some Important Formulae

The sum of the first n natural numbers,

IR TS ...+ n



Some Important Formulae

The sum of the first n natural numbers,

1+24+3+...4n = > 7



Some Important Formulae

The sum of the first n natural numbers,

1+24+3+...4n = > 7



Some Important Formulae

The sum of the first n natural numbers,

The sum of the squares of the first n natural
numbers,



Some Important Formulae

The sum of the first n natural numbers,

The sum of the squares of the first n natural
numbers,

124+ 922432+ ... +n?



Some Important Formulae

The sum of the first n natural numbers,
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The sum of the first n natural numbers,

The sum of the squares of the first n natural
numbers,
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The sum of the cubes of the first n natural
numbers,
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Some Important Formulae

The sum of the cubes of the first n natural
numbers,

7”3
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1°4+22 433+ ... +n3 =
1

n’(n + 1)?
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Consider the series
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Infinite Geometric Series

Consider the series

2 4 8 16 9
1_ 1\n 1 n
=[] -2 )
— 3 9
nl 2 10 20 30

Sy, | 1.5 1.998 1.999998093 1.999999998
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Infinite Geometric Series

AS n — oo, S, — 2. This limit is the
of the GP.

Sum to infinity of a GP:
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(1+2)°
+ )3
(1+2)*

1+ x
1+ 2x -
1+ 3x -
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Binomial Theorem

(L+2z) =
(1+2)° =
(1+2)° =
(1+2) =

Pascal’s triangle.

1 4+ 4x 4
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- 4% + 2



Binomial Theorem

(1+z) = 1+=x
S 27 4 o
BN 37 - 32 -
(14+2)* = 144z +62*-
Pascal’s triangle.
1 1

- 4% + 2



Binomial Theorem

(1+z) = 1+=x
S 27 4 o
AES— 37 - 377 4 o°
(1+2)* = 1+ 4z +62° + 42° + 2

Pascal’s triangle.



Binomial Theorem

(L+2z) =
(1+2)° =
(1+2)° =
(1+0)* =

Pascal’s triangle.

= 14+ 3x -
= 1+ 4x -

1 +x
)




Binomial Theorem

(1+x) = 1+«
S 27 4 o
BN 37 - 32 -
(L4+2)* = 1442+ 62°-
Pascal’s triangle.
1 1
1 2 1
1 3 3
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