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Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

Mathematics Club – p.3



Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

Mathematics Club – p.3



Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

Mathematics Club – p.3



Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

first term is denoted by a.

Mathematics Club – p.3



Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

first term is denoted by a.

common ratio is denoted by r.

Mathematics Club – p.3



Geometric Progression

A geometric progression (GP) is a sequence of
numbers in which any term can be obtained from
the previous term by multiplying by a certain
number called the common ratio.

For a GP:

first term is denoted by a.

common ratio is denoted by r.

the nth term is given by arn−1.
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The sum of first n terms of a GP

The sum of the first n terms is given by:

Sn = a + ar + ar2 + . . . + arn−1

= a

(

1 − rn

1 − r

)

, r < 1,

= a

(

rn − 1

r − 1

)

, r > 1,

= na, r = 1.
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The Sigma Notation

Let
u1, u2, u3. . . . , un

be the n terms of the sequence.
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The Sigma Notation

Let
u1, u2, u3. . . . , un

be the n terms of the sequence.

The sum of the first n terms,

Sn = u1 + u2 + u3. . . . + un

=
n
∑

r=1

ur
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Some Important Formulae

The sum of the first n natural numbers,

1 + 2 + 3 + . . . + n =
n
∑

r=1

r

= 1

2
n(n + 1)

The sum of the squares of the first n natural
numbers,

12 + 22 + 32 + . . . + n2 =
n
∑

r=1

r2

= 1

6
n(n + 1)(2n + 1)
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Some Important Formulae

The sum of the cubes of the first n natural
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Some Important Formulae

The sum of the cubes of the first n natural
numbers,

13 + 23 + 33 + . . . + n3 =
n
∑

r=1

r3

= 1

4
n2(n + 1)2
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Infinite Geometric Series

Consider the series
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Infinite Geometric Series

As n → ∞, Sn → 2. This limit is the sum to
infinity of the GP.

Sum to infinity of a GP:

S∞ =
a

1 − r
, |r| < 1.
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Binomial Theorem

(1 + x) = 1 + x

(1 + x)2 = 1 + 2x + x2

(1 + x)3 = 1 + 3x + 3x2 + x3

(1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4

Pascal’s triangle.

1 1
1 2 1

1 3 3 1
1 4 6 4 1
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