TRADITIONAL JAPANESE GEOMETRY A Selection of problems

Sketch solutions

A1. AD = BD = BC = τ , so AB = AC = τ + 1. Hence, from the similar triangles ABC and BCD, $(\tau + 1) / \tau = \tau / 1$. Therefore $\tau^2 - \tau - 1 = 0$, and so $\tau = (1 + \sqrt{5}) / 2 = 1.618...$

For a regular pentagon, the ratio of diagonal to side is $\boldsymbol{\tau}.$

In Figure A1, $\cos 36^\circ = \frac{1}{2} \text{ AB/BD} = \tau / 2$.

A2. In Figure A2, part of which is shown here, QR = k, so $QS = \tau k$, so

$$\begin{split} PS &= k + \tau k + \tau^2 k. \text{ Also} \\ PS/PT &= \cos 36^\circ = \tau \ / \ 2. \text{ Hence} \\ PT &= 2\tau k = (1 + \sqrt{5})k. \end{split}$$

A3. All the angles in the figure are multiples of 18° . From various isosceles triangles we see that PF = FQ = FE = AH. Hence the isosceles triangles EPR and AHB are similar and EPR is twice as big as AHB. Hence r = 2t.

A4. In the figure, various lengths are labelled 1 and x. PA.PB = PC.PD, so $x + 1 = x^2$; hence $x = \tau$.

B1. XY = PQ, and $PQ^2 = RQ^2 - PR^2$ = $(r + s)^2 - (r - s)^2 = 4rs$. Hence XY = $2\sqrt{rs}$

XY = XZ + ZY, so $2\sqrt{rs} = 2\sqrt{rt} + 2\sqrt{ts}$, from which the result follows.

B2. In the figure, write PQ = a, QR = b, RS = c. Then TP = a and PU = PR = a + b. Hence TU = 2a + b. Similarly VW = 2c + b. But TU = VW. Hence a = c. Hence TU = 2a + b = PS.

B3. $R = OA + AB = (2\sqrt{2} + 1)r$. Hence $r = R / (2\sqrt{2} + 1) = (2\sqrt{2} - 1)R / 7$.

Suppose that five circles of radius s are packed in a semi-circle of radius R in the symmetrical manner shown. Can we prove that s = r?

From the right angled triangles BED, OBC and OAD,

$x^2 + y^2 = 4s^2$	(1)
$4x^2 + s^2 = (R - s)^2$	(2)
$x^{2} + (s + y)^{2} = (R - s)^{2}$	(3)

From (1) and (3), $2sy = R^2 - 2Rs - 4s^2$; from (1) and (2), $4y^2 = 16s^2 - R^2 + 2Rs$.

We can now get two expressions for $4s^2y^2 = (2sy)^2$; equating them and simplifying we have $(R - 2s)(R^2 - 2Rs - 7s^2) = 0$. Hence $R = (2\sqrt{2} + 1)s$, so s = r.

(If we put s = 2, to avoid fractions, then $x = \sqrt{7}$ and y = 3.)

B4. We have 2r = (r + a) + (r + b) - (a + b) = x + y - z. Now if x, y and z are integers and $x^2 + y^2 = z^2$, then either x, y and z are all even or two of them are odd. Hence 2r is even, so r is an integer.

C1. Denote the angle ZXY by θ ; then the angle UXV is $180^\circ - \theta$, and each of the triangles is half of a parallelogram with sides a and c and angles θ and $180^\circ - \theta$. By the cosine formula, $d^2 = a^2 + c^2 - 2ac \cos \theta$, and $b^2 = a^2 + c^2 - 2ac \cos (180^\circ - \theta)$ $= a^2 + c^2 + 2ac \cos \theta$; the result follows by addition.

C2. Rotation through 90° clockwise transforms YQP to YSZ, so ZS \perp PQ and XS = XY + YQ = 2a = c = XZ. Hence the triangle XZS is isosceles, so ZS is perpendicular to the bisector of \angle ZXY. Hence PQ is parallel to this bisector. Similarly QR is parallel to the bisector of \angle UXV. But these two bisectors are parts of the same line, so PQ and QR are parallel.

C3. IHE is a right angle (the sum of two 45° angles); also ICE is a right angle. Hence H and C both lie on the circle α on IE as diameter. The equal angles \angle IHC and \angle CHE at the point H are subtended by equal chords IC and CE of the circle α .

C4. The crease BE is the perpendicular bisector of CD. Let AD = k (fixed) and AC = x. The right angled triangles BDM and CDA are similar, so BD/DM = CD/DA. Hence BD = $\frac{1}{2}$ CD²/DA = (k² + x²) / 2k. Hence AB = k - BD = (k² - x²) / 2k. The area of ABC is x(k² - x²) / 4k, whose minimum value occurs when x = k/ $\sqrt{3}$, as may easily be shown by calculus.

C5. The two triangles ADE and EFB, with their incircles, are similar. Hence AD/EF = r/s, so AD = tr/s. Now ED = t = ts/s, so AE = $t\sqrt{r^2 + s^2}/s$. Applying the formula of Problem B4 to the right angled triangle ADE with inradius r, we have $2r = tr/s + ts/s - t\sqrt{r^2 + s^2}/s$ = $t[r + s - \sqrt{r^2 + s^2}]/s$, from which we easily (?) obtain $t = r + s + \sqrt{r^2 + s^2}$.

John Rigby, 10 February 2002