TRADITIONAL JAPANESE GEOMETRY A Selection of problems

Sketch solutions
A1. $\mathrm{AD}=\mathrm{BD}=\mathrm{BC}=\tau$, so $\mathrm{AB}=\mathrm{AC}=\tau+1$. Hence, from the similar triangles ABC and BCD, $(\tau+1) / \tau=\tau / 1$. Therefore
$\tau^{2}-\tau-1=0$, and so
$\tau=(1+\sqrt{ } 5) / 2=1.618 \ldots$
For a regular pentagon, the ratio of diagonal to side is τ.

In Figure $\mathrm{A} 1, \cos 36^{\circ}=1 / 2 \mathrm{AB} / \mathrm{BD}=\tau / 2$.

A2. In Figure A2, part of which is shown here, $\mathrm{QR}=\mathrm{k}$, so $\mathrm{QS}=\tau \mathrm{k}$, so
$\mathrm{PS}=\mathrm{k}+\tau \mathrm{k}+\tau^{2} \mathrm{k}$. Also
$\mathrm{PS} / \mathrm{PT}=\cos 36^{\circ}=\tau / 2$. Hence
$\mathrm{PT}=2 \tau \mathrm{k}=(1+\sqrt{ } 5) \mathrm{k}$.

A3. All the angles in the figure are multiples of 18°. From various isosceles triangles we see that $\mathrm{PF}=\mathrm{FQ}=\mathrm{FE}=\mathrm{AH}$. Hence the isosceles triangles EPR and AHB are similar and EPR is twice as big as AHB.
Hence $r=2 t$.

A4. In the figure, various lengths are labelled 1 and x .
PA.PB $=$ PC.PD, so $x+1=x^{2}$; hence $x=\tau$.

B1. $X Y=P Q$, and $P Q^{2}=R Q^{2}-P R^{2}$ $=(\mathrm{r}+\mathrm{s})^{2}-(\mathrm{r}-\mathrm{s})^{2}=4 \mathrm{rs}$.
Hence $X Y=2 \sqrt{\mathrm{rs}}$
$\mathrm{XY}=\mathrm{XZ}+\mathrm{ZY}$, so $2 \sqrt{r \mathrm{~s}}=2 \sqrt{\mathrm{rt}}+2 \sqrt{\mathrm{ts}}$,
from which the result follows.

B2. In the figure, write
$\mathrm{PQ}=\mathrm{a}, \mathrm{QR}=\mathrm{b}, \mathrm{RS}=\mathrm{c}$. Then
$\mathrm{TP}=\mathrm{a}$ and $\mathrm{PU}=\mathrm{PR}=\mathrm{a}+\mathrm{b}$.
Hence TU $=2 \mathrm{a}+\mathrm{b}$.
Similarly VW $=2 c+b$.
But TU $=V W$. Hence $a=c$.
Hence $T U=2 \mathrm{a}+\mathrm{b}=\mathrm{PS}$.

B3. $\mathrm{R}=\mathrm{OA}+\mathrm{AB}=(2 \sqrt{ } 2+1) \mathrm{r}$.
Hence $r=R /(2 \sqrt{ } 2+1)=(2 \sqrt{ } 2-1) R / 7$.

Suppose that five circles of radius s are packed in a semi-circle of radius R in the symmetrical manner shown. Can we prove that $\mathrm{s}=\mathrm{r}$?

From the right angled triangles BED, OBC and OAD,
$\mathrm{x}^{2}+\mathrm{y}^{2}=4 \mathrm{~s}^{2}$
$4 x^{2}+s^{2}=(R-s)^{2}$
$x^{2}+(s+y)^{2}=(R-s)^{2}$
From (1) and (3), $2 s y=R^{2}-2 R s-4 s^{2}$;
from (1) and (2), $4 \mathrm{y}^{2}=16 \mathrm{~s}^{2}-\mathrm{R}^{2}+2$ Rs.
We can now get two expressions for $4 s^{2} y^{2}=(2 s y)^{2}$; equating them and simplifying we have $(R-2 s)\left(R^{2}-2 R s-7 s^{2}\right)=0$.
Hence $R=(2 \sqrt{2}+1)$ s, so $s=r$.
(If we put $\mathrm{s}=2$, to avoid fractions, then $\mathrm{x}=\sqrt{ } 7$ and $\mathrm{y}=3$.)

B4. We have
$2 \mathrm{r}=(\mathrm{r}+\mathrm{a})+(\mathrm{r}+\mathrm{b})-(\mathrm{a}+\mathrm{b})=\mathrm{x}+\mathrm{y}-\mathrm{z}$.
Now if x, y and z are integers and $x^{2}+y^{2}=z^{2}$, then either x, y and z are all even or two of them are odd.
Hence $2 r$ is even, so r is an integer.

C1. Denote the angle ZXY by θ; then the angle $U X V$ is $180^{\circ}-\theta$, and each of the triangles is half of a parallelogram with sides a and c and angles θ and $180^{\circ}-\theta$.
By the cosine formula, $d^{2}=a^{2}+c^{2}-2 a c \cos \theta$, and $\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}-2 \mathrm{ac} \cos \left(180^{\circ}-\theta\right)$

$$
=\mathrm{a}^{2}+\mathrm{c}^{2}+2 \mathrm{ac} \cos \theta ;
$$

the result follows by addition.

C2. Rotation through 90° clockwise transforms YQP to YSZ, so $\mathrm{ZS} \perp \mathrm{PQ}$ and $\mathrm{XS}=\mathrm{XY}+\mathrm{YQ}=2 \mathrm{a}=\mathrm{c}=\mathrm{XZ}$. Hence the triangle XZS is isosceles, so ZS is perpendicular to the bisector of $\angle \mathrm{ZXY}$.
Hence PQ is parallel to this bisector. Similarly QR is parallel to the bisector of $\angle \mathrm{UXV}$. But these two bisectors are parts of the same line, so PQ and QR are parallel.

C3. IHE is a right angle (the sum of two 45° angles); also ICE is a right angle. Hence H and C both lie on the circle α on IE as diameter.
The equal angles $\angle \mathrm{IHC}$ and $\angle \mathrm{CHE}$ at the point H are subtended by equal chords IC and CE of the circle α.

C 4 . The crease BE is the perpendicular bisector of CD. Let $\mathrm{AD}=\mathrm{k}$ (fixed) and $\mathrm{AC}=\mathrm{x}$. The right angled triangles BDM and CDA are similar, so $\mathrm{BD} / \mathrm{DM}=\mathrm{CD} / \mathrm{DA}$. Hence $\mathrm{BD}=1 / 2 \mathrm{CD}^{2} / \mathrm{DA}=\left(\mathrm{k}^{2}+\mathrm{x}^{2}\right) / 2 \mathrm{k}$.
Hence $\mathrm{AB}=\mathrm{k}-\mathrm{BD}=\left(\mathrm{k}^{2}-\mathrm{x}^{2}\right) / 2 \mathrm{k}$.
The area of $A B C$ is $x\left(k^{2}-x^{2}\right) / 4 k$,
whose minimum value occurs when $x=k / \sqrt{ } 3$, as may easily be shown by calculus.

C5. The two triangles ADE and EFB, with their incircles, are similar. Hence $\mathrm{AD} / \mathrm{EF}=\mathrm{r} / \mathrm{s}$, so $A D=t r / s$. Now $E D=t=t s / s$, so
$\mathrm{AE}=\mathrm{t} \sqrt{\mathrm{r}^{2}+\mathrm{s}^{2}} / \mathrm{s}$. Applying the formula of Problem B4 to the right angled triangle ADE with inradius r, we have
$2 \mathrm{r}=\mathrm{tr} / \mathrm{s}+\mathrm{ts} / \mathrm{s}-\mathrm{t} \sqrt{\mathrm{r}^{2}+\mathrm{s}^{2}} / \mathrm{s}$
$=\mathrm{t}\left[\mathrm{r}+\mathrm{s}-\sqrt{\mathrm{r}^{2}+\mathrm{s}^{2}}\right] / \mathrm{s}$, from which we easily (?)
obtain $\mathrm{t}=\mathrm{r}+\mathrm{s}+\sqrt{\mathrm{r}^{2}+\mathrm{s}^{2}}$.

