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Everybody is familiar with π, the ratio of a circle’s diameter to its circum-
ference; a little larger than 3.14. There is no way of writing down π exactly, so
we have to use approximations. We’re going to start off by looking at fractional
approximations to π.

Probably the most well known approxmation to π is 22
7
. But of course 3.14 can

be expressed easily as a fraction: 314
100

= 157
50

. 157
50

uses more numbers than 22
7

but
does this make it a better approximation? We know that 157

50
= 3.14, but using a

calculator it is easy to show that 22
7
≈ 3.14286 which is actually slightly closer to

π than 3.14.
So who “discovered” the fraction 22

7
? If you play about with a calculator you

will see that it is the best fractional approximation to π with a single digit denom-
inator. But it wasn’t found by somebody trying hundreds of different fractions on
a calculator. There are methodical methods for finding such approximations, one
of which we’re going to look at, called continued fractions.

What’s the simplest possible fractional approximation to π? How about 3? We
can rewrite π as:

π = 3 + 0.14159265358979 . . .

0.14159265358979 . . . is the error in the approximation. Maybe this can be
expressed as a fraction. If you take the numerator to be one you get the following
equation:

π = 3 +
1

x
, that is

1

x
= 0.14159265358979 . . .

x =
1

0.14159265358979 . . .
= 7.0625 . . .

Therefore:

π = 3 +
1

7.0625 . . .
, so π ≈ 3 +

1

7
=

22

7

which, as we’ve already seen, is a good approximation to π. In fact, it’s the
best fractional approximation to π with denominator ≤ 7.

How could we go further than this to find a better approximation? Well, you
can take the process one stage further as follows:

π = 3 +
1

7 + 1
y

so
1

y
= 0.0625 . . . ⇒ y =

1

0.0625 . . .
= 15.9966 . . .

1



So a better approximation to π is given by:

π ≈ 3 +
1

7 + 1
15

= 3 +
1

106
15

= 3 +
15

106
=

333

106
= 3.141509 . . .

In theory, you can repeat this process as many times as you like. In prac-
tice, it’s limited by the accuracy of your calculator. Let’s find one more better
approximation to π:

π = 3 +
1

7 + 1
15+0.9966...

= 3 +
1

7 + 1
15+ 1

1.00...

≈ 3 +
1

7 + 1
15+ 1

1

= 3 +
1

7 + 1
16

= 3 +
1

113
16

= 3 +
16

113
=

355

113
= 3.1415929 . . .

As you can see, this gives a very accurate approximation for a fraction with a
relatively small denominator. This form of writing a number is called continued
fraction notation, and can be expressed more compactly as follows:

π ≈ 3 +
1

7 + 1
15+ 1

1+...

= [3, 7, 15, 1, . . .]

The 3, 7, 15 and 1 in the square brackets have been read straight from the
“quadruple decker” fraction on the left.

The general procedure for finding continued fraction expansions is as follows.
We want to describe our number x in the form:

x = a +
1

y

where a is the first integer in the continued fraction expansion, and y is a
number (which may be irrational) on which you can repeat this process to find the
next one, and so on.

The method used to find a and y is exactly the same as the method we used
above. a is the largest integer less than or equal to x. This is known as the “floor
function” bxc. If you take this away from (a positive) x, you are left with the
fractional part of x, ie. the part on the right hand side of the decimal point. To
find y you simply invert this, so:

a = bxc and b =
1

x− bxc
=

1

x− a

This method works just as well to approximate other fractions as it does with
decimals. For example, taking x = 493

274
= 1.799270073 . . . we get x = [1, 1, 3, 1, 54].

The successive approximations are therefore:

1 , 1 +
1

1
= 2 , 1 +

1

1 + 1
3

=
7

4
= 1.75 , 1 +

1

1 + 1
3+ 1

1

=
9

5
= 1.8

and finally 1 +
1

1 + 1
3+ 1

1+ 1
54

=
493

274
itself.
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As you can see, the continued fraction expansion of this is of finite length, ie. it
doesn’t go on forever. The same cannot be said of the decimal expansion of many
fractions, for example 1

3
= 0.333333333333 . . .

A surd is a number of the form m +
√

n where both m and n are rational
numbers, which means they can both be written as fractions with the numerator
and denominator both integers. What happens when we find the continued fraction
expansion for one of these? Let’s try

√
2 (m = 0, n = 2).

√
2 = 1.4142136 . . . = 1 +

1

2.4142136 . . .
= 1 +

1

2 + 1
2.4142136...

Clearly the continued fraction expansion is going to repeat forever as follows:
[1, 2, 2, 2, 2, 2, 2, 2, . . .]. Is it possible to go the other way—given something like
[3, 3, 3, 3, 3, 3, 3, 3, . . .] can you find which number it represents? Well, if you call
this x you can write and solve an equation as follows:

x = [3, 3, 3, 3, . . .] = 3 +
1

3 + 1
3+ 1

3+...

= 3 +
1

x

As you can see, you can replace part of the continued fraction with x itself, as
it goes on forever. This equation can now be solved by multiplying through by x:

x2 = 3x + 1 so x2 − 3x− 1 = 0

giving x =
3 +

√
13

2

(the other solution: x = 3−
√

13
2

is negative so cannot be the number represented
by our continued fraction expansion)

A similar but slightly different technique can be used to find what number
[3, 1, 2, 1, 2, 1, 2, 1, 2, . . .] represents:

x = [3, 1, 2, 1, 2, 1, 2, . . .] = 3 +
1

1 + 1
2+ 1

1+ 1
2+...

so y = x− 1 = 2 +
1

1 + 1
2+ 1

1+ 1
2+...

= 2 +
1

1 + 1
y

= 2 +
y

y + 1

Multiplying this out and solving gives:

y(y + 1) = 2(y + 1) + y

y2 + y = 2y + 2 + y

y2 − 2y − 2 = 0
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y =
2±

√
4− (−8)

2
= 1±

√
3

so again y must be 1 +
√

3 giving x = 2 +
√

3

Now, let’s consider a problem which turns out to be related to continued
fractions—the number of days in a year. A year is the length of time it takes
the earth to orbit the sun, which unfortunately is not a whole number of days. In
fact, it’s not even a rational number of days, but is very close to 365.24219. If we
had 365 or 366 days each year, the seasons would eventually get out of step with
the calendar, and we’d have snow in August! What happens, of course, is that
our calendar has 365 days most years, but special leap years with 366 days. The
problem is how often we should have them.

The continued fraction expansion of 365.24219 is:

365.24219 = 365 +
1

4 + 1
7+...

Clearly the first fractional approximation to 365.24219 is therefore 3651
4
. This

would indicate that having a leap year every four years would be a good idea. This
is not a brilliant approximation, however—how far out is it?

365.24219 = 365 +
1

4
− (

1

4
− 0.24219)

= 365 +
1

4
− 0.00781

= 365 +
1

4
− 1

128.04 . . .

So having one leap year every four years would result in each year being 0.00781
days out in the long run, which is equivalent to 1 day every 128 years.

So, if we omitted the leap year every 128 years we would have a much better
system. However, this would be difficult to remember and apply (off the top of
your head, it’s not easy to divide a given year by 128) so in Roman times Julius
Caesar introduced the Julian Calendar with leap years every four years except
every 100, resulting in the following approximation to a year in the long run:

365 +
1

4
− 1

100
= 365.24

This was used throughout Europe, and gradually adopted by the rest of the
world until 1582, by which time (due to the inaccurate approximation and some
other miscalculations) the equinoxes had slipped back by ten days. Pope Gregory
XIII therefore introduced a better system: leap years every four years except every
100, but do have them every 400 (which is why 2000 was a leap year), giving the
following approximation:

365 +
1

4
− 1

100
+

1

400
= 365.2425
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To correct the slippage, 4th October 1582 was followed by 15th October 1582
in Britain. The rest of the world was slower to adopt the Gregorian Calendar,
however—Turkey changed as recently as 1927, and the Greek and Russian Ortho-
dox Churches still use the Julian calendar today.

So, how accurate is this system, and could it be improved further? In the long
run, each year will be 365.2425−365.24219 = 0.00031 days too long, that is it will
take 1

0.00031
≈ 3226 years before the calendar is one day out. That’s pretty good,

but a better system was once devised.
The French revolution occurred in 1793. They didn’t want to keep anything

associated with the “old” France, and this even extended as far as the calendar!
They divided the year into twelve months of thirty days, with an extra five days at
the end (six in leap years). Each month was divided into three weeks, each of which
lasted for ten days—this was understandably unpopular as it meant that weekends
occurred less often! What interests us, however, is their rule for calculating which
years should be leap years. They proposed leap years every four years except
every 100, but do have them every 400 except every 4000. This gives the following
approximation:

365 +
1

4
− 1

100
+

1

400
− 1

4000
= 365.24225

So, in the long run, each year will be 365.24225 − 365.24219 = 0.00006 days
too long, that is it will take 1

0.00006
> 16000 years before the calendar is one day

out. Very impressive, but the calendar didn’t last that long, and was abandoned
just twelve years later in 1805!
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