SURREAL NUMBERS

MARK HOLLINGWORTH

1. HACKENBUSH

Hackenbush is a game for two players, Black and White. The play-
ing area consists of the ground and a number of lines of each colour
eventually attached to the ground (Fig. 1). The players take turns to
remove one of their own lines. Anything which loses contact with the
ground floats off and disappears. The loser is the first player unable to
move. Who should win the game in Fig. 17

FIGURE 1

Date: 28th April 2001.
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By counting the lines of each colour, we see that Black has 9 moves
and White has 5 moves. So Black has a an advantage of 4 moves. Of
course, Black can easily lose his advantage by taking one of the lower
branches but with careful play he should win with 4 moves to spare.
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FIGURE 2

What happens when the two sides are evenly matched (Fig. 2)? If
White starts, and each player plays carefully, Black will take the last
line, so White loses. Similarly, if Black starts, Black will lose. This
situation is called a zero game. The defining property of the zero game
is that the first player to move loses.

It’s easy to predict what will happen when the different colours are
separated. But when the two different colours appear in the same
component, the game becomes more interesting. Who should win the
game in Fig. 37 If Black moves first, he must take the lower line,
leaving an empty position. White is now unable to move, so she loses.
If White moves first, she must take the upper line, leaving the lower. As
Black moves next, he must take must take this line, leaving the empty
position, so White loses again.

Black certainly has an advantage. How many moves ahead is he? If
we give White an extra move (Fig. 4), it turns out that she now has the
advantage! (Try analysing the game as we did before). This suggests
that Black’s original advantage is positive, but less than one move. We
can show that in fact Fig. 3 is worth half a move to Black by playing
the game in Fig. 5. Try showing that this is a zero game, i.e. that the
first player to move always loses. Why does this show that Fig. 3 is
worth half a move to Black?
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FIGURE 3. {0[1} =1

Ficure 4. {0[1}+{|0}=—

3

FiGure 5. {0[1}+{0[1}+{ |0} =0
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1.1. Notation. Conway [1] devised a wonderfully simple notation for
analysing games. It’s an easy notation to apply to Hackenbush, and
it applies to many other games as well. He writes the empty position
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(Fig. 6), in which neither player can move, as { | }. Because this is a
zero game (the first player to move loses), we can write

{[}=0.

In Fig. 7, Black can move to the empty position (worth 0), but White

FIGUREG6. { |} =0

cannot move. Black clearly has a one-move advantage. In Conway’s
notation, we write

o] }=1.

Similarly, the position in Fig. 8 is written as

FIcure 7. {0] } =1

{10}=-1.

The minus sign indicates that White has an advantage over Black. In

FIGURE 8. { |0} =—1

the position in Fig. 3, Black can move to the empty position, and White
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can move to the position in Fig. 7. We showed earlier that Fig. 3 is
worth half a move to Black, so in Conway’s notation we write
1
0|1} =—.
{01} =3

In Fig. 5, Black has two options, each leading to a position worth
—%. White has three options. If she takes the lone line, she leaves a
position worth 1. If she takes either of the other two lines, she leaves

a position worth % We already knew that Fig. 5 is worth 0 overall, so

we write
1 1|11
T a5y a9 |l a'a’ 1 =0.
2" 222
Conway’s notation for a general position is { a,b,c,... | p,q,7,... }.
Here, a, b, c, ... are the values of Black’s options, and p, ¢, r, ... are the

values of White’s options.

2. NUMBERS

Before we go on, we need to reflect on what we have learnt.

1. The strength of a position alone determines the outcome of the
game, assuming careful play on each side. Therefore, since dif-
ferent positions may have the same strength, any position can be
substituted for any other position with the same strength.

2. Some positions can be separated into several simpler components
(e.g. Figs. 4, 5). The crucial point here is that moving in one of
the components never affects the state of play in any of the other
components. In this case the strength of the position is the sum
of the strengths of the components.

3. We can test the strength of a new position by adding a position
whose strength we already know and playing the resulting game.

4. Positions with positive strength will be won by Black, positions
with negative strength by White, and positions with zero strength
by the second player (assuming careful play).

Have you ever thought about what we mean by the word ‘number’?
In what follows, we will show how Conway managed to define numbers
using games. To appreciate this, we need to get used to playing games
using only Conway’s notation.

For example, I claim that the game { % ‘ } is worth one move to

Black. We can test this by playing the game

{3] +t10, )

to see if it is a zero game.
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If Black moves first, his only option is to move to % in the left-hand
game. Now White must move from the position

{0[1}+{[0}.

White has two options, namely to move to 1 in the left-hand game, or
two 0 in the right-hand game. The best option turns out to be to move
to 1 in the left-hand game. For if White moves to 0 in the right-hand
game, the position willbe {0 | 1} +{ | } with Black to move. He can
only move to { | } +{ | }, which means that White loses as she is
unable to move. But if White moves to { 0| } +{ | 0}, we now have
the sum of a game and its negative, i.e. a zero game. Convince yourself
that the player about to move (Black) will lose. So the best option for
White is indeed to move to 1 in the left-hand game.

Another way of seeing this is as follows: We know that the left-hand
position is worth %, and the right-hand position is worth —1. If White
moves to 1 in the left-hand game, she replaces a position worth % to
Black by a position worth 1 to Black, so White loses half a move. This
is better than losing a whole move by moving from —1 to 0 in the
right-hand game. So the players’ best moves minimise their losses.

Try completing the proof by showing that if White moves first from
position (1), she will lose.

For more practice on playing games using Conway’s notation, try
showing that {1 ]2} =14 and {0 } = 1. Try adapting the zero
game in Fig. 5, which we used to show that {0 | 1} = 1, to show that
{n|n+1}=n+3, and that {0 |2 ™} =2""' (Here, as earlier,
n is a positive integer). Try sketching the corresponding Hackenbush
positions.

2.1. Building up a system of numbers. The first number to be
created is 0. Conway makes 0 from the empty game: { | } = 0. The
next two numbers are { |0} = —1 and {0]| } = 1. Continuing,
we can make new numbers { a,b,c,... | p,q,r, ...} out of previously
created numbers. The numbers a,b,c,...,p,q,7,... can be any previ-
ously created numbers so long as all of a, b, c, ... are strictly less than
all of p,q,r,... . Even with this restriction, many choices will just be
other representations of a previous number. For example, we have seen
that { % ‘ } = 1. It turns out that the new numbers are between the
numbers created previously (Fig. 9).

If you continue Fig. 9, you will find that all the fractions have de-
nominators 2,4, 8, ..., i.e. the powers of 2. To get other fractions, and
irrational numbers such as 7, you need to allow infinite sets on the left
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FIGURE 9. A tree of the simplest numbers.
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and right. For example,
1 5 21 3 11 43 1
{Z’E’6_4"" ‘ é’:?z’@""}: 3
where the left-hand dots stand for all other numbers of the form

14+22 4284 ... 422072
922n ?

and the right-hand dots stand for all other numbers of the form

1+2+23+25+._.+22n—3
922n—1 .

This may seem clumsy, but it is no more so than the decimal expansion
% = 0.3 (actually it is the binary expansion % = 0.01 in disguise). And
allowing infinite sets introduces wonderful numbers such as the infinite

number

w={1,2,3,...] }
and its square root
Vaz{Lz&“w ,%,”}.
There are also infinitesimal numbers such as

0 111 1
223477 [ W’

which is positive, but smaller than any of our usual decimal numbers.
The full theory is very beautiful. See any of [1, 3, 5, 6] for more detail.
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3. HISTORY

I’ve heard Conway himself speak about his theory of numbers and
games. He said he developed his theory of numbers first, after becoming
interested in Cantor’s theory [4, Ch. 10] of infinite numbers. Later, he
tried to analyse the strategies of games such as Go, and realized that
he could break complicated games down into sums of simpler games.
This lead him to notice that his theory of numbers was just what was
needed to understand games.

Conway’s theory of numbers became widely known when Knuth’s
novel [6] was published. It was Knuth who introduced the name ‘Sur-
real Numbers’. Berlekamp [1, p. 79] found an application of the theory,
using Hackenbush positions to represent numbers on computers. The
Hackenbush representation has advantages over the standard fixed and
floating point representations. In Fig. 9, the numbers near the centre
are more tightly spaced than the numbers near the edges. This often
happens in sets of data which occur in practice, and this is why the
Hackenbush system can be advantageous.
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