GETTING CLOSE TO THE SQUARE ROOT OF 2. Dr. E.V. Flynn. evflynn@liv.ac.uk Liverpool University Mathematics Club. Saturday, 24 February, 2001.

1. Any nonzero integer can be written as a power of 2 multiplied by an odd number. For example, 44 can be written as $2^{2} \times 11$; similarly, $24=2^{3} \times 3,18=2^{1} \times 9$ and $15=2^{0} \times 15$. The "power of 2 in n " means the power of 2 you get when you write n in the above form. For example, the power of 2 in 40 is 3 , since $40=2^{3} \times 5$. In general, if $n=2^{r} \times($ an odd number $)$, then r is the power of 2 in n.

What is the power of 2 in each of the following numbers: $128,55,-160$? What is the power of 2 in each of the square numbers: $1,4,9,16,25,36$? For any nonzero integer a, what can you always say about the power of 2 in a^{2} ? Consider the numbers which are twice squares: $2,8,18,32,50,72$. For any nonzero integer b, what can you always say about the power of 2 in $2 b^{2}$? Is it ever possible for $a^{2}=2 b^{2}$? Is it ever possible for $\sqrt{2}=\frac{a}{b}$? What about $\sqrt{3}, \sqrt{5}, \ldots$?
2. From question 1, we have seen that it is impossible to find integers a, b for which $\sqrt{2}=\frac{a}{b}$. This is same as saying that $\sqrt{2}$ is never exactly equal to a rational number $\frac{a}{b}$ (i.e. $\sqrt{2}$ is irrational); but can we get a good approximation of $\sqrt{2}$ by a rational number $\frac{a}{b}$? That is, can we choose integers a, b so that $\frac{a}{b}$ is very close to $\sqrt{2}$? Let's try to find the best approximation to $\sqrt{2}$ with denominator 11 ; that is, we want to find which of: $\frac{1}{11}, \frac{2}{11}, \ldots$ is closest to $\sqrt{2}$. We find that $\sqrt{2}$ is between $\frac{15}{11}$ and $\frac{16}{11}$. [Can you think of a way of discovering this on a calculator, which is faster than looking at all of $\frac{1}{11}, \frac{2}{11}, \ldots$?]. On a calculator, we see that $\frac{15}{11}-\sqrt{2}=-.050577198$ and $\frac{16}{11}-\sqrt{2}=.040331893$. So, $\frac{16}{11}$ is the best approximation (with denominator 11) to $\sqrt{2}$. Note that the recipricol of .040331893 is 24.79427385 , so that $\frac{16}{11}$ is about $\frac{1}{24.79427385}$ away from $\sqrt{2}$. Is this good or bad? Well, the numbers $\frac{1}{11}, \frac{2}{11}, \ldots$ are spaced $\frac{1}{11}$ apart, so that we know in advance that the closest one to $\sqrt{2}$ will be within $\frac{1}{22}$ of $\sqrt{2}$. So, really, being $\frac{1}{24.79427385}$ away from $\sqrt{2}$ is pretty lousy; it's hardly any better than the $\frac{1}{22}$ accuracy we were guaranteed at the outset. In general, amongst fractions with denominator b, namely: $\frac{1}{b}, \frac{2}{b}, \ldots$, we can always find one within $\frac{1}{2 b}$ of $\sqrt{2}$, so of course we can always get as close to $\sqrt{2}$ as we like. There will be a fraction with denominator 100 which is within $\frac{1}{200}$ of $\sqrt{2}$, and a fraction with denominator 1000 which is within $\frac{1}{2000}$ of $\sqrt{2}$, and so on.

A good approximation to $\sqrt{2}$ is a rational number $\frac{a}{b}$ which is much closer to $\sqrt{2}$ than one would expect with denominator b; that is, which is much closer to $\sqrt{2}$ than $\frac{1}{2 b}$. For example, look at fractions with denominator 12 . You should find that the closest is $\frac{17}{12}$, and that $\frac{17}{12}-\sqrt{2}=.002453105$, whose recipricol is 407.6466356 ; that is, $\frac{17}{12}$ is within
$\frac{1}{407}$ of $\sqrt{2}$. That's amazing! It's much better than being within $\frac{1}{24}$. As another way of seeing how close it is, see how close $\left(\frac{17}{12}\right)^{2}$ is to 2 ; this time, using exact fractions. Well, $\left(\frac{17}{12}\right)^{2}-2=\frac{289}{144}-2=\frac{289-288}{144}=\frac{1}{12^{2}}$. So, the square of $\frac{17}{12}$ is merely $\frac{1}{12^{2}}$ away from 2 . Let's say that $\frac{a}{b}$ is a really good approximation of $\sqrt{2}$ if $\left(\frac{a}{b}\right)^{2}$ is at most $\frac{1}{b^{2}}$ away from 2.

For each denominator b from 1 to 30 , find the fraction $\frac{a}{b}$ which is the best approximation to $\sqrt{2}$ with denominator b [for example, $b=11$ and $b=12$ have already been done for you above]. In each case, compute $\frac{a}{b}-\sqrt{2}$ (as a decimal), and $\left(\frac{a}{b}\right)^{2}-2$ (as an exact fraction)? Do not simplify any of your fractions; for example, if $a=6, b=4$, write $\frac{a}{b}$ with denominator b, i.e. as $\frac{6}{4}$ (not simplified), and write $\left(\frac{a}{b}\right)^{2}-2$ with denominator b^{2}, i.e. as $\frac{4}{4^{2}}$. Pick out the first few really good approximations $\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}, \ldots$. Do you see a pattern? Use the pattern to get the next two. If $\frac{a}{b}$ is not a really good approximation, we still say that it is a pretty good approximation if $\left(\frac{a}{b}\right)^{2}$ is at most $\frac{2}{b^{2}}$ away from 2. Find the first few pretty good approximations. Do you notice a pattern? Use the pattern to get the next two.

Is it ever possible for $\left(\frac{a}{b}\right)^{2}$ to be exactly $\frac{3}{b^{2}}$ away from 2 ?
3. Consider numbers of the form $a+b \sqrt{2}$, where a, b are integers. These can be multiplied together; for example, $(1+\sqrt{2})(3+2 \sqrt{2})=1 \times 3+1 \times 2 \sqrt{2}+\sqrt{2} \times 3+\sqrt{2} \times 2 \sqrt{2}=7+5 \sqrt{2}$. Calculate: $(1+\sqrt{2})(7+5 \sqrt{2})$.

We define N by $N(a+b \sqrt{2})=(a+b \sqrt{2})(a-b \sqrt{2})$. Note that this is the same as $N(a+b \sqrt{2})=a^{2}-2 b^{2}$ [explain why]. For example, $N(4+3 \sqrt{2})=4^{2}-2 \times 3^{2}=-2$. Compute $N(3+2 \sqrt{2})$. Suppose that $r_{1}=a_{1}+b_{1} \sqrt{2}$ and $r_{2}=a_{2}+b_{2} \sqrt{2}$. Show that $N\left(r_{1} r_{2}\right)=N\left(r_{1}\right) N\left(r_{2}\right)$. Let $r=a+b \sqrt{2}$. Show that $N\left(r^{2}\right)=N(r)^{2}$, that $N\left(r^{3}\right)=N(r)^{3}$, and so on.

Let $r=1+\sqrt{2}$. What is $N(r)$? Compute r, r^{2}, r^{3}, \ldots. What is the pattern? Prove this pattern [hint: first expand $(1+\sqrt{2})(a+b \sqrt{2})$]. What do we always know about $N(r), N\left(r^{2}\right), N\left(r^{3}\right), \ldots$? How does this relate to integer solutions x, y of the equation $x^{2}-2 y^{2}= \pm 1$? How does this relate to question 2? [Hard question for you to think about: how can it be proved that the above sequence gives all of the integer solutions to $x^{2}-2 y^{2}= \pm 1$? $]$

Let $r=1+\sqrt{2}$ and let $s=\sqrt{2}$. What is $N(s)$? Compute $r s, r^{2} s, r^{3} s, \ldots$ What is the pattern? Prove this pattern. What do we always know about $N(r s), N\left(r^{2} s\right), N\left(r^{3} s\right), \ldots$? How does this relate to question 2 ?
4. Consider: $2,2+\frac{1}{2}, 2+\frac{1}{2+\frac{1}{2}}, 2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \ldots$, which simplify to: $2, \frac{5}{2}, \frac{12}{5}, \frac{29}{12}, \ldots$. Compute the next few terms. What are these numbers approaching as a limit?

Consider: $1,1+\frac{1}{2}, 1+\frac{1}{2+\frac{1}{2}}, 1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \ldots$, which simplify to: $1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \ldots$. Compute the next few terms. What are these numbers approaching as a limit? Do you recognise the numerators and denominators? Why does this happen? How does this relate to question 2 ?

