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You are familiar with the idea that there is a straight line through any two points in the
plane. Very often we use the formula

y=mzx+c (1)

for a straight line, where m is the ‘slope’ and c is the ‘intercept’. See the figure. For every

y=mxtc

1 unit move to the right a point on the line moves up by m units. If m < 0 then the point
moves down instead of up. Here is an example.

Example 1 Find the equation of the line through (2, 3) and (1,5).

Substitute x = 2,y = 3 into y = mx + ¢. This gives 3 = 2m + c.

Substitute x = 1,y = 5 into y = mx + c¢. This gives 5 = m + c.

Subtracting the two equations gives —2 = m, and substituting gives ¢ =5 —m = 7. So the
equation of the line is y = —2x + 7.

Notice that something goes wrong if we try to find the equation of the line through (2, 3)
and (2,5) by this method. The equations become 3 = 2m + ¢ and 5 = 2m + ¢ and these
contradict one another: subtracting gives —2 = 0 which is nonsensical. This is because the
line in this case is ‘vertical’, in fact has equation x = 2. Lines of the form ‘x = constant’ are



the only exceptions to equations of the form y = ma + ¢ for lines. It’s as well to be aware
of this.

A completely general equation for a straight line is ax 4+ by = c¢ though this has two
disadvantages: (i) we don’t allow ¢ = b = 0; (ii) we can multiply the equation through by
any nonzero number k, giving kazx + kby = kc, and it’s the same line as before. For example,
x—3y =4 and 2z — 6y = 8 and —3z + 9y = —12 are all the same line. [There is a way
round these problems which is called using the ‘projective plane’ but we won’t go into that
today!]

Question We've seen that ‘vertical’ lines are the exception to being of the form y = mx +c.
Which lines cannot be represented as ax + by = 17 Which lines cannot be represented as
x+by==c?

We’ll go on now to talk about circles. First of all, circles through two given points.
The left-hand figure shows a circle through A and B, centre O. The conclusion is the

A

OP is perpendicular to AB. When a circle centre O
passes through 4 and B the triangles OAP and OBP
are congruent, so P is the midpoint of 4B. So OP
is the perpendicular bisector of 4B.

important fact that the centre O lies on the perpendicular bisector of AB, that is, on the
line perpendicular to AB and passing through the midpoint of AB. In the right-hand figure,
we take A = (1,1) and B = (2,3). The centres of the circles through A and B all lie along
the perpendicular bisector of AB, and this is drawn in the figure. To find the equation of
this perpendicular bisector we need to use the fact that,

if (z,y) is the centre of any circle through A and B, then (z,y) is the same
distance from A and from B.

Turning this into algebra we get
(z=1°+(@y—1)?2 = (z-2)*+(y—3)?, or z*—2z+1+y’—2y+1=1r*—4x+4+y*—6y+9,

which after cancelling (note the 2% and y? both go!) gives 2x + 4y = 11. So this is the line
containing all the centres of the circles in the figure.
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What about a circle through three given points? The figure suggests one way to find the
centre of such a circle.

perp bisector of BC

A

centre must lie here,

on both perp bisectors perp bisector of 4B

Example 2 Let A =(-2,-1),B = (0,1) and C = (3,3). The perpendicular bisectors of
AB and BC are

(z+2)2+@w+1)*=2>+(y—1) thatis 4z +4y = —4, and

22+ (y— 1% = (z - 3)>+ (y — 3)%, thatis 6z +4y=1T.
Solving these two equations we get the centre as (2 ——) The radius is the distance from

this point to say A, which works out as v/1066/2 or about 16.3.
The equation of the circle centre (a,b) and radius r is

(x—a)*+ (y—b)? =r2 (2)

The equation of the circle through A, B and C then works out as x? + y? — 21z + 23y = 24.

Here is another way of working out the equation of a circle through three points. Let’s
rewrite (2) as
2> +y* — 2ax — 2by + ¢ =0, where c¢=a’+b*>—1% (3)
Then let’s use the same method as we used for lines to determine a, b and ¢. So we substitute
x = —2,y = —1in (3), because the circle passes through A; then we substitute z =0,y =1
and finally x = 3,y = 3. These give the three equations

4a+2b+c = -5
2b—c =1
6a+6b—c = 18

These are ‘simultaneous equations’ for a, b and ¢, and solving them (try it!) gives the same

answer @ = 2,b = —%, ¢ = —24 as before. The centre of the circle is of course (a, b).

Here are some Examples for you to try for yourself.

3 A=(0,0),B=(0,2),C = (2,0). This example you might be able to dOJIlSt by drawing
a picture to find the centre (1, 1) and radius /2. The equation is 2?4 y? — 2z —2y = 0.

4 A=(0,6),B = (12,0),C = (—12,—6). The values of a,b, c work out as 1, -7, —120.
(So what is the radius?)



5 Try A = (0,1),B = (1,2),C = (2,3). Something strange happens here. Can you
explain it?

6 Is it possible for a circle to have a = 1,b = 1,¢ = 37 (Try working out r.)

7 Can you devise a test, given four points, to decide whether they lie on the same circle?

Finally let us look at circles through three points which are close together on the same
given curve, say a parabola y = z?. For a start let’s take three points A = (0,0), B = (s, s?)
and C = (—s,s?) which all lie on y = x2. When s is small they are all close together.
Proceeding as before we take (3) as the equation of the circle through the three points, and
substitute the coordinates of the points A, B and C is one by one. This gives the three
equations

c = 0
2as + 2bs* —¢ = s+ st
—2as+2bs* —¢ = $*+ s

These are quite easy to solve, giving a = 0,b = 5 + 3s%,¢ = 0. So the radius of the circle
is in this case just r = £ 4+ £s? (distance of (a,b) from one of the three points, (0,0)). It is
particularly interesting to notice that when s is very small this radius is very close to % As
s becomes very small (as ‘s tends to zero’ is the official phrase) the circle is said to approach
the circle of curvature of the parabola y = 22 at the origin. It is the best fitting circle there.
Its radius % is called the radius of curvature of the parabola at the origin. See the upper left
figure on the next page where s = 0.1.

If we do the same calculations for three points (1,1), (1+s, (145)?), (1—s, (1—5)?) which
are all close to (1,1) things are a bit more complicated but work out to a = —4 + s%,b =
T+ 15?2, c = —3+3s? and the radius comes to 3+/125 — 3052 + 5s%. When s is very small
this is close to %\/m = g\/g or about 5.59. This is the radius of curvature of the parabola

t (1,1). See the upper right figure on the next page where s = 0.1.

The circle of curvature is ‘one step beyond’ the tangent line to the parabola. The tangent
line is obtained by taking the straight line through two very close points of the parabola,
and then letting the distance between the points ‘tend to zero’. The slope of the tangent is
the ‘limit’ of the slopes of these lines. In the same way the radius of curvature is the ‘limit’
of the radii of the circles through three very close points on the parabola. By the way the
curvature of the parabola at a point P is 1/r where r is the radius of curvature. So for P
at the origin the curvature is 2, and for P at (1,1) the curvature is 2/(5v/5). The larger the
curvature, the more curved the parabola is!

The same ideas apply to any curve, not just to the parabola: we can find the best fitting
circle at any point P. Its radius r is the radius of curvature and 1/r is the curvature.

The animations which follow are designed to show the circle of curvature at various points
of a curve C. Remember the circle of curvature at P is the circle through three points all
extremely close to P, for example P itself and a very nearby point on each side of P. It
is the circle which ‘best approximates’ the curve C' at P. The centres of all these circles of
curvature, as P is taken at different points along the curve, trace out something called the
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evolute of the curve. Typically this evolute has a number of sharp points called cusps. In
fact there is a beautiful theorem called the ‘Four Vertex Theorem’ which says that there are
always at least four such cusps provided the curve C' closes up and does not cross through
itself. In one of the animations C' is an ellipse, and then the evolute has exactly four cusps.
In the other animation the curve C' is more complicated and the evolute has more cusps. As
you watch the circle’s centre move round the evolute, you’ll be struck with this fact: as the
centre passes through a cusp the circle either stops getting bigger and starts to get smaller
again, or stops getting smaller and starts to get bigger again. These are ‘turning points’ or
‘extreme points’ of the radius of the circle.

Example 8 Going back to the parabola y = z? let’s take the point (¢, #?) and the two points
(t +s,(t+ s)?) and (t — s, (t — s)?) on either side. Let the equation of the circle through
these three points be, as before, 22 + y? — 2ax — 2by + ¢ = 0. Using the same method of
substitution as before, and after a rather marathon session of solving for a, b, ¢, maybe you
can arrive at

a=—4t+1s*, b=1+3>+1s% c=-3t"+ 3%

At any rate you might like to check that, with these values of a, b, c, the circle does pass
through the three points above! The interesting thing is to let s become very small. Then
a, b, c are very nearly —4t3, % + 3t%, —3t* respectively. We can deduce two things from this:
(i) the centre of curvature (a,b) of the parabola at (t,t?) is (—4t3, 1 4 3t);
(ii) the radius of curvature r is given by

r’=a’+ b —c=16t°"+ (3 + 3¢ + 9t*) + 3t* = 1 (1 + 12¢° + 48¢* + 64¢°) = 1(1 + 4¢°)°.
Note the beautiful final form of the answer!

As the point P = (t,12) sweeps along the parabola the centre of curvature x = —4t3,y =

1+ 3t* sweeps along the evolute. Note that 22 = 16¢%, (y — )° = 27t® so the equation of
the evolute is 2722 = 16(y — 3)°. It’s pretty amazing to be able to deduce this just from



equations of circles (and lots of algebra!). This curve is shown in the figure. It contains the
centres of all the circles of curvature of the parabola.

Note The best way to find the radius of curvature is not by the method used here but by
using calculus. You’ll meet this incredibly powerful and beautiful subject later if you haven’t
met it already. If you know about calculus then you can understand the amazing formula
for the radius of curvature of a curve y = f(z): it is

(1+ ' (@))""
f”($) ’

where f’, f" are the first and second derivatives of f with respect to x. Notice that this is
‘infinite’ if f”(z) = 0. In this case the circle through three nearby points gets more and
more like a straight line as the points get closer to the place where f”(z) = 0. The formula
displayed here is the one which is used in the animations to draw the circles of curvature.

Of course we don’t need to stop at circles. For example we can look at ‘conics’ which are
curves with a more general equation of the form

az’® + by + 2hxy + 297 + 2fy + ¢ = 0.

We can be given now five points and expect to find a conic through all of them. Two
examples are illustrated in the figure on the next page. When doing the calculations it is
convenient to choose say a = 1 and solve for the other five coefficients b, h, g, f, c.






