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Abstract

Migrating cells of Myxococcus xanthus (MX) in the early stages of starvation-induced development exhibit elaborate patterns of

propagating waves. These so-called rippling patterns are formed by two sets of waves travelling in opposite directions. It has been

experimentally shown that formation of these waves is mediated by cell–cell contact signalling (C-signalling). Here, we develop an

individual-based model to study the formation of rippling patterns in MX populations. Following the work of Igoshin et al. (Proc.

Natl. Acad. Sci. 98 (2001) 14913) we consider each moving cell to have an internal clock which controls its turning behaviour and

sensitivity to C-signal. Specifically, we examine the effects of changing: C-signal strength, sensitivity/refractoriness, cell density, and

noise upon the formation and structure of the rippling patterns. We also consider three modified models that have no explicit

refractory period and examine their ability to produce rippling patterns.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Myxococcus xanthus (MX) is a Gram-negative rod-
shaped bacterium that aggregates to form fruiting
bodies when deprived of nutrients. The formation of
these multicellular fruiting bodies depends on both
temporally and spatially controlled changes in organised
cell movements in response to starvation. During the
aggregation phase the MX cells pass through a period
where the surface is swept by a complex pattern of waves
called the ‘‘ripple phase’’. This pattern consists of dense
ridges of cells moving in opposite directions creating a
rippling movement (see Fig. 1). A key question in
understanding the ripple pattern concerns the impor-
tance of contact-mediated intercellular communication.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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MX cells move by gliding, a process whereby bacterial
cells move in the direction of their long axes on a solid
surface (Henrichsen, 1972). Individual bacteria con-
stantly move and reverse their direction of movement
every 5–10 minutes (Jelsbak and Sogaard-Andersen,
1999). The reversal behaviour of MX cells is controlled
by cell–cell signalling, specifically MX cells signal via the
C-signalling system which operates only when two cells
are in end-to-end contact with one another (Kim and
Kaiser, 1990; Sager and Kaiser, 1994).

Several models have already been developed to study
the formation of the rippling pattern observed in MX
bacteria populations (Igoshin et al., 2001; Lutscher and
Stevens, 2002; Börner et al., 2002). All of these models
assume that C-signalling plays a crucial role in the
rippling pattern formation. The models of Igoshin et al.
(2001) and Lutscher and Stevens (2002) are continuous
partial differential equation models, whilst Börner et al.
(2002) deals with a discrete one-dimensional cellular
automata model. Both Igoshin et al. (2001) and Börner
et al. (2002) assume the existence of a necessary
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Fig. 1. Dense ridges of cells form during aggregation of MX. These

ridges form two sets of travelling waves which appear to move in

opposite directions. Four snapshots (A–D) in time of a myxobacteria

population during the ripple phase are shown to illustrate this

behaviour (ridge 1 moves right and ridge 2 moves left). Figure made

from video composite of supplementary movie for Igoshin et al. (2001).

Bar on (A) represents 200mm:
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refractory period where, MX bacteria are insensitive to
C-signal. With these models if no refractory period
exists then no rippling behaviour is observed. The model
of Igoshin et al. (2001) also considers the effects of
stochasticity on rippling pattern formation and conclude
that rippling patterns form only when noise levels are
low. Lutscher and Stevens (2002) develop a Gold-
stein–Kac type model where turning behaviour of cells is
described in terms of reaction kinetics. No assumption
of a refractory period is required in this model to obtain
rippling waves. Another important requirement for
formation of rippling patterns pointed out in Igoshin
et al. (2001) and Lutscher and Stevens (2002) is a
nonlinear dependence of C-signalling on cell density.
This was shown by analysis of the model in Lutscher
and Stevens (2002) and by numerical study of the model
in Igoshin et al. (2001). From these three models we see
that the main mechanism generating rippling patterns is
an instability caused by nonlinearities in the models
(including transition of cells between refractory and
sensitive phases).

Whilst the above continuous models were successful
in producing rippling patterns and understanding
mechanisms of their formation they do not capture the
discrete nature of myxobacteria and their interactions.
In this sense the model of Börner et al. (2002) is more
biologically realistic, however, it over simplifies reversal
behaviour of the cells by assuming that a single collision
is enough to trigger a reversal.

In this paper we develop a one-dimensional model
which combines the advantages of the models of Börner
et al. (2002) and Igoshin et al. (2001) in that the cells are
considered as individuals and their behaviour is driven
by an internal clock. Using this model we examine in
detail the conditions under which rippling patterns form
and the geometrical properties they exhibit. In parti-
cular, we show (i) the existence of standing waves, (ii)
there is no necessity for the nonlinear dependence of C-
signal on cell density to achieve rippling patterns, (iii)
there are irregularities in the rippling patterns and that
(iv) these are sensitive to variations in model parameters
and noise. Finally, we discuss rippling pattern formation
without a refractory period.
2. Model

Our discrete model of rippling pattern formation will
consider a number of MX cells distributed in some
medium and examine how the distribution of cells varies
in time. In addition each cell can have several states
which can also change in time. We place the MX cells in
continuous space and ignore their size, i.e. we consider
each MX cell to be a single point with continuous
coordinates. We then apply a few experimentally
justified rules for the behaviour of the cells to examine
the formation of rippling patterns. We now describe in
detail the model assumptions and their justification.
(i)
 We consider a one-dimensional medium, contain-
ing a number of cells. According to experimental
observations (Welch and Kaiser, 2001), rippling
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waves form in a two-dimensional medium, where
the waves are observed as migrating curved ridges
of cells. However, it has been shown mathemati-
cally (Igoshin et al., 2001; Lutscher and Stevens,
2002; Börner et al., 2002) that the formation of the
rippling patterns can be described as a one-
dimensional phenomenon.
(ii)
 Each cell moves either left or right with velocity (v),
which is generally constant, this is in agreement
with experimental results (Welch and Kaiser, 2001).
However, in some of our simulations we will add
noise to this constant velocity.
(iii)
Fig. 2. Schematic diagram of the internal clock that governs cell state

and moves anti-clockwise (as signified by the arrows). Cells that have

an internal clock value between 0 and R þ S (the upper half, darker

region) move rightward. While all other cells move leftward (the lower

half, lighter region). Cells with internal clock value between 0 and R or
Each cell is either sensitive or insensitive (refrac-
tory) to C-signals from other cells. Whilst there is
no direct experimental evidence of a refractory
period the work of Sager and Kaiser (1994) hints at
its existence, where they showed that high concen-
trations of isolated C-factor increases the frequency
of cell reversals up to some limit (approximately
3min) which could be the value of refractoriness of
the cells. Due to the inconclusive evidence for a
refractory period (Igoshin et al., 2001; Börner et al.,
2002, Lutscher and Stevens, 2002) we will also
consider a modified version of the model that has
no explicit refractory period.
between T and T þ R are refractory. While cells with internal clock

value between R and T or T þ R and 2T are sensitive. When a cell

(iv)
changes direction its internal clock value is set to 0 (if cell is now left

moving) or is set to T (if cell is now right moving).
Therefore from (ii), (iii) each cell can be in one of
four different states: left or right moving and
sensitive or refractory.
(v)
 Cell state changes periodically (with period 2T) and
is defined by an internal clock (with value f) which
increases one unit every time step. The concept of
an internal clock was introduced in Igoshin et al.
(2001) and is one possible way of modelling the
periodic state change behaviour (Fig. 2).
(vi)
 Cells migrating in opposite directions can come
into contact with each other (collide) and exchange
C-signal. This assumption is in line with experi-
mental results on contact signalling (Kim and
Kaiser, 1990; Sager and Kaiser, 1994).
(vii)
 Sensitive cells will increase their clock by a units for
every collision they receive (a is the C-signal
strength). C-signal has been observed to increase
reversal frequency of cells (Jelsbak and Sogaard-
Andersen, 1999; Welch and Kaiser, 2001; Wenyuan
et al., 1996).
Our model is considered as synchronous and therefore
all cells are updated at each time step according to the
following simulation algorithm:
(i)
 Each cell relocates, according to the direction and
magnitude of its velocity.
(ii)
 The number of collisions each sensitive cell receives
is counted. A collision is defined as when a sensitive
cells path crosses the path of any other cell moving
in the opposite direction, i.e. for the cells to have
crossed paths they must have collided (since our
model system is one-dimensional).
(iii)
 The clock of each cell is increased by one unit. In
addition, each collision a sensitive cell receives
increases the value of its internal clock by a units.
(iv)
 Cell state is changed according to its internal clock
value (f), i.e. the clock defines whether the cell is
left or right moving and sensitive or refractory (see
Fig. 2).
All simulations start with a number (N) of randomly
distributed cells throughout the one-dimensional med-
ium. Initially, each cell has a random value for its
internal clock (f) between 0 and 2T units, which defines
it as either left or right moving and either sensitive or
refractory (see Fig. 2). To deal with cells interacting with
the boundaries of the medium we impose reflecting
boundary conditions, however, we also consider cyclic
boundary conditions.

According to experimental observations we shall
assume that the cell velocity v ¼ 10mm=min; the
wavelength of the rippling pattern is 100 mm and the
reversal period of cells is approximately 10min (Welch
and Kaiser, 2001). We also know from experimental
evidence that the minimum reversal time is 3–4min
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(Sager and Kaiser, 1994), we will assume that this
represents the value of the refractory period.

The typical parameter values used in all simulations
(unless stated otherwise) were: number of cells N ¼ 360;
duration of sensitive phase S ¼ 50 time units, duration
of refractory phase R ¼ 25 time units and the strength
of C-signal a ¼ 5:0: Assuming that 1 time unit ¼

0:15 min then the refractory period is 3.75min and a
maximum reversal time of 11.25min.

Since space is considered as continuous then the size
of the medium is somewhat arbitrary. However, the size
of the medium must be sufficient to contain a few
rippling waves. Our typical medium was L ¼ 800mm
which gives a cell density (r ¼ N=L) of 0:45 cells=mm;
although, we examine a range of initial cell densities
from 0.01 to 0:5 cells=mm:
3. Results

The main aims of this paper are to examine the
parameter space of the model and how properties of
observed patterns are affected by changes in these
parameters. In the next section we determine the
domains where different patterns exist. In Sections 3.2
and 3.3, we study the properties of rippling patterns
subject to variation in C-signal strength, cell density and
noise. Finally in Section 3.4, we consider three modified
Fig. 3. Space–time plots of the three types of patterns generated by cells in

patterns. Dimensions of space–time plots on this and subsequent figures are

shows stationary pattern of rippling waves after 10 h (4000 time steps). Arro

different spatio-temporal locations and show that the wavelength varies ove

subsequent figures) represents cell density, i.e. white to black being low to h

values are defined by the typical set of values given in Section 2, unless otherw

strength of C-signal, a; vs. cell density, r; and (E) the duration of refractory
models to study the necessity for a refractory period in
the formation of rippling patterns.
3.1. Parameter space

In our model we found that three types of patterns
can be observed, random waves, standing waves and
rippling patterns (see Fig. 3).

Fig. 3A shows the pattern formed by randomly
migrating MX cells, this is due to the interactions
between the cells not causing synchronisation. From our
simulations we observe this pattern when cell density (r)
or C-signal strength (a) or sensitivity (S) are small (see
Fig. 3D). Generally from our results, random waves are
observed when raSoC; where C is a positive constant
of order 1: A decrease in r represents a reduction in the
number of cells and therefore a reduction in the number
of collisions each cell receives every time step. A
decrease in a reduces the impact of each collision. A
decrease in S reduces the number of time steps available
for collisions to occur. Therefore, since only sensitive
cells receive C-signal the total impact of collisions on the
internal clock value is given by raS: Since the internal
clock value changes by 1 unit each time step we must
have raSo1 for cell–cell interactions to be negligible.

Fig. 3B shows standing waves, when cells form high
density stationary clusters. Cells within these clusters
continue to move and change direction frequently. The
main reason for such rapid changes in direction is due to
the model. (A) random waves, (B) standing waves and (C) rippling

800mm by 60min. (A) and (B) show first 60min of simulation and (C)

ws (i) and (ii) on (C) indicate the wavelength of the rippling pattern in

r space and time. Grayscale colouring of space–time plots in this (and

igh density. For these (and all subsequent) simulations the parameter

ise stated. S ¼ 0 in (A) and R ¼ 0 in (B). Parameter space plots of (D)

period, R; vs. duration of sensitive period, S:
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the small refractory period (see Fig. 3E). A characteristic
of this pattern is individual clusters of cells that do not
interact with one another.

Random waves (Fig. 3A) could be considered as being
the resulting pattern from cells that are always
insensitive (refractory) and stationary waves (Fig. 3B)
could be considered as being the resulting pattern from
cells that are always sensitive. These phenomena are at
opposite ends of the possible behaviour this model
exhibits and somewhere in between we find rippling
waves which are the resulting pattern from cells that are
neither too sensitive or refractory. Fig. 3C shows the
rippling patterns formed by two sets of waves travelling
in opposite directions. Therefore the parameter space is
divided into three domains, corresponding to random
waves, standing waves and rippling patterns (see Fig. 3D
and 3E).

3.2. Wavelength distributions

In this paper, we specifically interested in the rippling
patterns observed in Fig. 3(C). These patterns form
from an initially random distribution of cells which
through cell–cell interactions leads to synchronisation of
their movements and a clustering of the cells. Cells in
each cluster now migrate in synchronisation and
produce the characteristic rippling patterns seen in
Fig. 3(C).

The periodicity in the rippling patterns can be
characterised by wavelength (W ). Upon closer inspec-
tion we found that there is irregularity in these patterns,
i.e. wavelength varies in space and time. As can be seen
in Fig. 3(C) we have highlighted two separate regions of
the rippling pattern which clearly show different
wavelengths. These differences can be described by a
distribution of reversal times of all cells. In each cluster
cells have approximately the same reversal time,
however, cells in different clusters may have different
reversal times. Thus each cluster can be characterised by
the reversal time of cells forming the cluster and
subsequently the wavelength by the moving clusters is
given by

Wavelength ¼ Cell Velocity � Reversal Time;

where the velocity (v) is constant. This relationship
describes the distance travelled by a single cell for a
given reversal time and since all cells in each cluster have
the same reversal time it also describes the wavelength of
each cluster. Therefore, the distribution of wavelengths
for all clusters can be represented by the distribution of
reversal times for all clusters. The latter are generated by
producing histograms of the time intervals between
successive reversals of all cells.

If a cell is refractory it cannot reverse, therefore the
minimum period of reversal is bounded by the refractory
period (R). On the other hand a cell that receives no
collisions will change direction at the end of its sensitive
phase, therefore its maximum reversal period will be
R þ S (see Fig. 2).

Figs. 4 and 5 show different simulations that
produced rippling patterns (Figs. 4A–C and 5A–C)
correspondingly Figs. 4D–F and 5D–F show the
resulting reversal time histograms for each rippling
pattern. All histograms confirm our expectation that the
wavelength is always in the range: vRoWovðS þ RÞ:
However, the actual distribution within this range will
be dependent on other model parameters. Note, the
above inequality implies that when R is large compared
to S the wavelength will grow linearly with R:

The effect of a on the rippling patterns can be seen
from Fig. 4. One can see from the space–time plots in
Fig. 4A–C that increasing a reduces the wavelength. If a
is small the wavelength is close to its maximum value,
R þ S; (Fig. 4D). On the other hand if a is large then the
wavelength is close to its minimum value, R; (Fig. 4F).
Fig. 4D–F also shows the dispersion in the wavelength
distribution for varying a: If a is large (Fig. 4F) or small
(Fig. 4D), dispersion is small, however, the dispersion of
wavelengths is wider for intermediate values of a (Fig.
4E). Similar results are obtained for varying r; i.e.
increasing r has a similar effect as increasing a: These
results imply that the product ar will also behave the
same way. In reality this product is a measure of the
impact of cell–cell interactions. Therefore, these results
imply that strong cell interactions results in reversal of
cells immediately after the refractory period. Similarly,
weak cell interactions results in reversal of cells just
before the sensitive phase ends. For intermediate
strength cell interactions cells will reverse somewhere
between these two extremes and therefore have a wider
range of possible reversal times.

3.3. The effects of noise

All biological systems are subject to noise and as such
we consider the effects of noise upon the properties of
the rippling patterns. In particular, we examine cell
velocity noise (with amplitude Z), i.e. only the speed of
the cell is effected by noise.

Fig. 5 shows how increasing noise affects the rippling
patterns. As noise increases the ridges of cells become
more dispersed (Fig. 5A–C) and the rippling pattern
becomes more regular (the wavelength becomes more
unified over space). The histograms (Fig. 5D–E) also
confirm this observation. In addition we can easily see
from the histograms that increasing noise increases
wavelength.

It seems intuitive that increasing noise in the cell
velocity may increase the ridge thickness and decrease
dispersion in the wavelength of the resulting rippling
patterns. However, the fact that increasing noise further
leads to an increase in wavelength might not be so
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Fig. 5. Space–time plots of the three different rippling patterns generated by cells in the model for increasing values of velocity noise with amplitude

Z: (A) Z ¼ 0:1; (B) Z ¼ 0:4 and (C) Z ¼ 1:0: (D)–(F) are the reversal time histograms corresponding to the rippling patterns in (A)–(C).

Fig. 4. Space–time plots of the three different rippling patterns generated by cells in the model for increasing values of C-signal strength (a). (A)

a ¼ 1:7; (B) a ¼ 5 and (C) a ¼ 15: (D)–(F) are the reversal time histograms corresponding to the rippling patterns in (A)–(C). To produce these (and

all subsequent) histograms we waited for 5 h (2000 time steps) for the rippling waves to form and then counted the intervals between cell reversals for

all cells for the following 10 h (4000 time steps).
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obvious. This can be explained as follows, an increase in
noise will cause some collisions to be missed this will in
turn decrease the rate of reversal (i.e. increase the time
taken) and therefore increase the wavelength of the
rippling patterns.
3.4. Modified model with varying sensitivity

According to our model as well as the models of
Igoshin et al. (2001) and Börner et al. (2002) the
existence of a refractory state (when cells are insensitive
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to C-signals) is an absolute requirement for the
formation of rippling patterns. On the other hand the
model of Lutscher and Stevens (2002) does not require a
refractory period and furthermore there is only indirect
experimental evidence for the existence of a refractory
cell state (Sager and Kaiser, 1994).

An alternative model to those with a refractory period
would possibly consider a modified sensitive period. We
Fig. 6. Plots of the three different functions that are used to vary

sensitivity of cells, b; with their internal phase, f; in the non-refractory

model (see Fig. 7). The solid line shows a Hill function defined by

b1 ¼ f20=ððT=3Þ20 þ f20
Þ; the dotted line is a linear function b2 ¼ f=T

and dashed–dotted line is a cubic function b3 ¼ ðf=TÞ
3:

Fig. 7. Space–time plots of the three different rippling patterns generated by

period and instead have varying sensitivity functions described in Fig. 6. (A

histograms corresponding to the rippling patterns in (A)–(C).
have developed a few modifications of the model where
sensitivity of cells b is a function of their internal clock
value f and examined whether rippling patterns can
form in these models. We considered three functions of
sensitivity versus internal clock value. In a first
modification we used a very steep Hill function with a
point of inflection corresponding to the refractory
period, R ¼ 25; (see Fig. 6). We found that this
modification of the model is capable of producing
rippling patterns (Fig. 7A). Our original model could be
considered as one where the sensitivity of cells to C-
signal is changing according to the Heaviside step
function (sensitivity versus internal phase): b ¼ 0 when
foR and b ¼ 1 when RofoR þ S: The Hill function
is very close to this step function and as a result
corresponding space–time plots and histograms are very
similar (cf. Fig. 4B, E with Fig. 7A, D). Perhaps the
most natural way to vary sensitivity is in a linear fashion
(Fig. 6). As can be seen from Fig. 7B it also produces
rippling patterns with a similar wavelength as before.
However, comparing histograms (cf. Fig. 7D and E) we
can see a reduced dispersion of the wavelength in the
linear case. In the last modification of the model we
considered a cubic function of sensitivity versus internal
phase. Again this modified model is capable of produ-
cing rippling patterns (Fig. 7C, F). From this figure we
can see that the wavelength is greatly increased and
again the dispersion in wavelength is reduced in
comparison with Fig. 7D, E. The plot of the cubic
function (Fig. 6) could be considered as corresponding
to a model with decreased sensitive and increased
cells in three modified models. All of these models have no refractory

) Hill function, (B) linear and (C) cubic. (D)–(F) are the reversal time
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refractory periods. This explains both the increased
wavelength of the rippling pattern and the decreased
dispersion observed in Fig. 7C, F.
4. Conclusions and discussion

In this paper we have developed a one-dimensional
individual based model of MX bacteria movement and
interaction. This model is capable of reproducing the
rippling patterns that are observed experimentally in
starving populations of MX bacteria (Welch and Kaiser,
2001). We examined in detail the parameter space of this
model and found in addition to rippling patterns two
other types of waves (Fig. 3). Random waves are
observed when cells almost do not interact. Standing
waves in contrast are observed when cells are constantly
interacting. These two types of wave can be considered
as opposite ends of our models behaviour and rippling
patterns are somewhere in between.

Rippling waves form regular patterns which can be
characterised by their wavelength (see Figs. 4, 5 and 7).
This wavelength can vary in both time and space.
Rippling wavelength is directly correlated with the
reversal frequency of cell movement. Therefore, in order
to study the geometry of rippling patterns we produced
histograms of the time intervals between successive
reversals of all cells. Similar histograms were produced
both experimentally and numerically in Igoshin et al.
(2001) and Welch and Kaiser (2001). These results
showed that histograms from cells producing rippling
patterns have a bimodal distribution. This bimodality
was explained in terms of the cells location within the
wave, where cells are either crest riders or trough
travellers. The latter having the longer reversal periods.
Comparison of the histograms generated from our
model with those of Igoshin et al. (2001) and Welch
and Kaiser (2001) shows they are very similar and we
often also observe bimodality (Figs. 4, 5 and 7).
However, in our model due to its discrete nature there
are no trough travellers, as all cells are located on the
crests. Therefore our explanation of the observed
bimodality must be different. We relate bimodality (or
multimodality) to the simple fact that wavelength is not
constant over space.

Analysis of the histograms allowed us to examine the
effects of varying the model parameters on the rippling
patterns. We were then able to show that increasing C-
signal strength, a; or increasing density of cells, r;
decreases the wavelength (Fig. 4) which is in good
agreement with experimental observations (Sager and
Kaiser, 1994; Welch and Kaiser, 2001; Wenyuan et al.,
1996).

In real life the MX population is heterogeneous, i.e.
all cells differ slightly in their properties such as speed of
migration and C-signal production. To take this into
account we introduced noise into our model, specifically
we considered velocity noise. Increasing the amplitude
of noise, Z; reduced dispersion in wavelength and
surprisingly increased wavelength (Fig. 5).

In Igoshin et al. (2001) it was suggested that the
formation of rippling patterns is only possible when C-
signalling is highly nonlinear, however, we obtain
rippling patterns whilst treating C-signalling linearly.
Another requirement for the formation of rippling
patterns is the existence of a refractory state (Igoshin
et al., 2001; Börner et al., 2002). This is also true of our
model, since when the refractory period is absent we
obtain standing waves (Fig. 3). To analyse this require-
ment further, we considered three modifications of our
model that did not explicitly consider a refractory period
but instead considered sensitivity that varied with
internal clock value. In all three cases we were able to
obtain rippling patterns (Figs. 6 and 7). These results
indicate that the need for a refractory period to obtain
rippling patterns observed by Igohsin et al. (2001) and
Börner et al. (2002) reflects a more general requirement
which is a dependence of the sensitivity of cells to C-
signal upon internal clock value. Note, the model of
Lutscher and Stevens (2002), which has no refractory
period, satisfies this requirement. Moreover, in this
paper they consider different turning rate functions
which are analogous to our phase sensitivity functions
(Fig. 6). However, due to the completely different styles
of modelling there is no direct way to compare the
functions we used to vary sensitivity (Fig. 6) with those
of Lutscher and Stevens (2002).

The one-dimensional cellular automata model devel-
oped by Börner et al. (2002) could be considered as a
limit case of our model where sensitivity, S; tends to
infinity and the strength of C-signal, a; is not less than S:
In addition our model considers space as continuous
while Börner et al. (2002) consider discrete space.
Therefore some results we obtained were similar, e.g.
for small refractory period we obtain no rippling
patterns. However, our model is capable of producing
standing waves and we were able to examine the effects
of S and a on the properties of the rippling patterns as
well as examine the influence of noise.

Following the submission of this manuscript two new
publications appeared on modelling pattern formation
in myxobacteria populations. In the paper of Alber et al.
(2004), a lattice gas cellular automaton was developed
which implements cell shape such cells have a biologi-
cally realistic dimension, i.e. one cell is made up of
several lattice sites in a stick like configuration. The
basic assumptions concerning cell behaviour in this
model are very similar to ours, except that Alber et al.
(2004) take into account a time delay in the cells reversal
behaviour. Börner and Bär (2004) developed a contin-
uous reaction–advection model similar to that of
Lutscher and Stevens (2002) but with the addition of
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time delay which accounts for the refractory period of
the myxobacteria. Both of these papers confirm that a
refractory period is needed for the formation of rippling
patterns.

In laboratory conditions MX populations are essentially
two-dimensional where the ridges of the rippling waves are
bent at the boundaries. Whilst our one-dimensional model
captures much of the observed behaviour in rippling MX
populations we would like to develop it further by
considering a two-dimensional implementation of our
model. Also the life-cycle of MX populations does not
stop at rippling waves but progresses to form fruiting
bodies. The standing waves, reported in this paper, may be
related to the formation of such fruiting bodies. We would
therefore like to examine the formation of fruiting bodies
in more detail and in particular focus on changes in cell
properties between cells forming fruiting bodies and those
forming rippling waves.
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