1 Purpose

E04GBF is a comprehensive quasi-Newton algorithm for finding an unconstrained minimum of a sum of squares of \(m \) nonlinear functions in \(n \) variables \((m \geq n) \). First derivatives are required.

The routine is intended for functions which have continuous first and second derivatives (although it will usually work even if the derivatives have occasional discontinuities).

2 Specification

```fortran
SUBROUTINE E04GBF(M, N, LSQLIN, LSQFUN, LSQMON, IPRINT, MAXCAL, ETA,
  1 XTOL, STEPMX, X, FSUMSQ, FVEC, FJAC, LJ, S, V, LV,
  2 NITER, NF, IW, LIW, W, LW, IFAIL)
INTEGER M, N, IPRINT, MAXCAL, LJ, LV, NITER, NF, IW(LIW), LIW,
  1 LW, IFAIL
REAL ETA, XTOL, STEPMX, X(N), FSUMSQ, FVEC(M), FJAC(LJ,N),
  1 S(N), V(LV,N), W(LW)
EXTERNAL LSQLIN, LSQFUN, LSQMON
```

3 Description

This routine is essentially identical to the subroutine LSQFDQ in the National Physical Laboratory Algorithms Library. It is applicable to problems of the form:

\[
\text{Minimize } F(x) = \sum_{i=1}^{m} [f_i(x)]^2
\]

where \(x = (x_1, x_2, \ldots, x_n)^T \) and \(m \geq n \). (The functions \(f_i(x) \) are often referred to as ‘residuals’.)

The user must supply a subroutine to calculate the values of the \(f_i(x) \) and their first derivatives \(\frac{\partial f_i}{\partial x_j} \) at any point \(x \).

From a starting point \(x^{(1)} \) supplied by the user, the routine generates a sequence of points \(x^{(2)}, x^{(3)}, \ldots \), which is intended to converge to a local minimum of \(F(x) \). The sequence of points is given by

\[
x^{(k+1)} = x^{(k)} + \alpha^{(k)} p^{(k)}
\]

where the vector \(p^{(k)} \) is a direction of search, and \(\alpha^{(k)} \) is chosen such that \(F(x^{(k)} + \alpha^{(k)} p^{(k)}) \) is approximately a minimum with respect to \(\alpha^{(k)} \).

The vector \(p^{(k)} \) used depends upon the reduction in the sum of squares obtained during the last iteration. If the sum of squares was sufficiently reduced, then \(p^{(k)} \) is the Gauss–Newton direction; otherwise the second derivatives of the \(f_i(x) \) are taken into account using a quasi-Newton updating scheme.

The method is designed to ensure that steady progress is made whatever the starting point, and to have the rapid ultimate convergence of Newton’s method.

4 References

5 Parameters

1: M – INTEGER
 \text{Input}

2: N – INTEGER
 \text{Input}

\text{On entry:} the number \(m \) of residuals, \(f_i(x) \), and the number \(n \) of variables, \(x_j \).

\text{Constraint:} 1 \leq N \leq M.

3: LSQLIN – SUBROUTINE, supplied by the NAG Fortran Library.
 \text{External Procedure}

This parameter enables the user to specify whether the linear minimizations (i.e., minimizations of \(F(x^{(k)} + \alpha^{(k)} p^{(k)}) \) with respect to \(\alpha^{(k)} \)) are to be performed by a routine which just requires the evaluation of the \(f_i(x) \) (E04FCV), or by a routine which also requires the first derivatives of the \(f_i(x) \) (E04HEV).

It will often be possible to evaluate the first derivatives of the residuals in about the same amount of computer time that is required for the evaluation of the residuals themselves -- if this is so then E04GBF should be called with routine E04HEV as the parameter LSQLIN. However, if the evaluation of the derivatives takes more than about 4 times as long as the evaluation of the residuals, then E04FCV will usually be preferable. If in doubt, use E04HEV as it is slightly more robust.

The routine names E04FCV and E04HEV may be implementation dependent: see the Users’ Note for your implementation for details.

Whichever subroutine is used must be declared as EXTERNAL in the (sub)program from which E04GBF is called.

4: LSQFUN – SUBROUTINE, supplied by the user.
 \text{External Procedure}

LSQFUN must calculate the vector of values \(f_i(x) \) and Jacobian matrix of first derivatives \(\frac{\partial f_i}{\partial x_j} \) at any point \(x \). (However, if the user does not wish to calculate the residuals or first derivatives at a particular \(x \), there is the option of setting a parameter to cause E04GBF to terminate immediately.)

Its specification is:

\begin{verbatim}
SUBROUTINE LSQFUN(IFLAG, M, N, XC, FVECC, FJACC, LJC, IW, LIW, W, LW)
 INTEGER IFLAG, M, N, LJC, IW(LIW), LIW, LW
 REAL XC(N), FVECC(M), FJACC(LJC,N), W(LW)
 Important: the dimension declaration for FJACC must contain the variable LJC, not an integer constant.

1: IFLAG – INTEGER
 \text{Input/Output}

\text{On entry:} IFLAG will be set to 0, 1 or 2. The value 0 indicates that only the residuals need to be evaluated, the value 1 indicates that only the Jacobian matrix needs to be evaluated, and the value 2 indicates that both the residuals and the Jacobian matrix must be calculated. (If E04HEV is used as E04GBF’s parameter LSQLIN, LSQFUN will always be called with IFLAG set to 2.)

\text{On exit:} if it is not possible to evaluate the \(f_i(x) \) or their first derivatives at the point given in XC (or if it is wished to stop the calculations for any other reason), the user should reset IFLAG to some negative number and return control to E04GBF. E04GBF will then terminate immediately, with IFAIL set to the user’s setting of IFLAG.

2: M – INTEGER
 \text{Input}

3: N – INTEGER
 \text{Input}

\text{On entry:} the number \(m \) and \(n \) of residuals and variables, respectively.
\end{verbatim}
4: \(XC(N) \) – *real* array

Input

On entry: the point \(x \) at which the values of the \(f_i \) and the \(\frac{\partial f_i}{\partial x_j} \) are required.

5: \(FVECC(M) \) – *real* array

Output

On exit: unless IFLAG = 1 on entry, or IFLAG is reset to a negative number, then \(FVECC(i) \) must contain the value of \(f_i \) at the point \(x \), for \(i = 1, 2, \ldots, m \).

6: \(FJACC(LJC,N) \) – *real* array

Output

On exit: unless IFLAG = 0 on entry, or IFLAG is reset to a negative number, then \(FJACC(i,j) \) must contain the value of \(\frac{\partial f_i}{\partial x_j} \) at the point \(x \), for \(i = 1, 2, \ldots, m \); \(j = 1, 2, \ldots, n \).

7: \(LJC \) – INTEGER

Input

On entry: the first dimension of the array \(FJACC \) as declared in the (sub)program from which E04GBF is called.

8: \(IW(LIW) \) – INTEGER array

Workspace

9: \(LIW \) – INTEGER

Input

10: \(W(LW) \) – *real* array

Workspace

11: \(LW \) – INTEGER

Input

LSQFUN is called with E04GBF’s parameters \(IW, LIW, W, LW \) as these parameters. They are present so that, when other library routines require the solution of a minimization subproblem, constants needed for the evaluation of residuals can be passed through \(IW \) and \(W \). Similarly, users could pass quantities to LSQFUN from the segment which calls E04GBF by using partitions of \(IW \) and \(W \) beyond those used as workspace by E04GBF. However, because of the danger of mistakes in partitioning, it is **recommended** that users should pass information to LSQFUN via COMMON and **not use** \(IW \) or \(W \) at all. In any case users must **not change** the elements of \(IW \) and \(W \) used as workspace by E04GBF.

LSQFUN must be declared as EXTERNAL in the (sub)program from which E04GBF is called. Parameters denoted as *Input* must **not** be changed by this procedure.

Note: LSQFUN should be tested separately before being used in conjunction with E04GBF.

5: \(LSQMON \) – SUBROUTINE, supplied by the user.

External Procedure

If IPRINT \(\geq 0 \), the user must supply a subroutine LSQMON which is suitable for monitoring the minimization process. LSQMON must not change the values of any of its parameters.

If IPRINT \(< 0 \), the NAG Fortran Library dummy routine E04FDZ can be used as LSQMON. (In some implementations the name of this routine is FDZE04; refer to the Users’ Note for your implementation.)

Its specification is:

```fortran
SUBROUTINE LSQMON(M, N, XC, FVECC, FJACC, LJC, S, IGRADE, NITER, NF,
                  IW, LIW, W, LW)
INTEGER M, N, LJC, IGRADE, NITER, NF, IW(LIW), LIW, LW
real M, N, LJC, IGRADE, NITER, NF, IW(LIW), LIW, LW,
      XC(N), FVECC(M), FJACC(LJC,N), S(N), W(LW)
```

Important: the dimension declaration for \(FJACC \) must contain the variable \(LJC \), not an integer constant.
1: M – INTEGER
2: N – INTEGER

Input

On entry: the numbers \(m \) and \(n \) of residuals and variables, respectively.

3: XC(N) – *real* array

Input

On entry: the co-ordinates of the current point \(x \).

4: FVECC(M) – *real* array

Input

On entry: the value of the residuals \(f_i \) at the current point \(x \).

5: FJACC(LJC,N) – *real* array

Input

On entry: \(FJACC(i, j) \) contains the value of \(\frac{\partial f_i}{\partial x_j} \) at the current point \(x \), for \(i = 1, 2, \ldots, m; \ j = 1, 2, \ldots, n \).

6: LJC – INTEGER

Input

On entry: the first dimension of the array FJACC.

7: S(N) – *real* array

Input

On entry: the singular values of the current Jacobian matrix. Thus \(S \) may be useful as information about the structure of the user’s problem.

8: IGRADE – INTEGER

Input

On entry: E04GBF estimates the dimension of the subspace for which the Jacobian matrix can be used as a valid approximation to the curvature (see Gill and Murray (1978)). This estimate is called the grade of the Jacobian matrix, and IGRADE gives its current value.

9: NITER – INTEGER

Input

On entry: the number of iterations which have been performed in E04GBF.

10: NF – INTEGER

Input

On entry: the number of evaluations of the residuals. (If E04HEV is used as LSQLIN, NF is also the number of evaluations of the Jacobian matrix.)

11: IW(LIW) – INTEGER array

Workspace

12: LIW – INTEGER

Input

13: W(LW) – *real* array

Workspace

14: LW – INTEGER

Input

As in LSQFUN, these parameters correspond to the parameters IW, LIW, W, LW of E04GBF. They are included in LSQMON’s parameter list primarily for when E04GBF is called by other library routines.

LSQMON must be declared as EXTERNAL in the (sub)program from which E04GBF is called. Parameters denoted as *Input* must not be changed by this procedure.

Note: the user should normally print the sum of squares of residuals, so as to be able to examine the sequence of values of \(F(x) \) mentioned in Section 7. It is usually helpful to also print XC, the gradient of the sum of squares, NITER and NF.
6: **IPRINT** – INTEGER

Input

On entry: the frequency with which LSQMON is to be called. If IPRINT > 0, LSQMON is called once every IPRINT iterations and just before exit from E04GBF. If IPRINT = 0, LSQMON is just called at the final point. If IPRINT < 0, LSQMON is not called at all.

IPRINT should normally be set to a small positive number.

Suggested value: IPRINT = 1.

7: **MAXCAL** – INTEGER

Input

On entry: this parameter enables the user to limit the number of times that LSQFUN is called by E04GBF. There will be an error exit (see Section 6) after MAXCAL calls of LSQFUN.

Suggested value:

\
\[\text{MAXCAL} = \begin{cases} 75 \times n & \text{if E04FCV is used as LSQLIN,} \\ 50 \times n & \text{if E04HEV is used as LSQLIN.} \end{cases} \]

Constraint: \(\text{MAXCAL} \geq 1 \).

8: **ETA** – real

Input

On entry: every iteration of E04GBF involves a linear minimization (i.e., minimization of \(F(x^{(k)} + \alpha^{(k)} p^{(k)}) \) with respect to \(\alpha^{(k)} \)). ETA specifies how accurately these linear minimizations are to be performed. The minimum with respect to \(\alpha^{(k)} \) will be located more accurately for small values of ETA (say 0.01) than for large values (say 0.9).

Although accurate linear minimizations will generally reduce the number of iterations performed by E04GBF, they will increase the number of calls of LSQFUN made every iteration. On balance it is usually more efficient to perform a low accuracy minimization.

Suggested value:

\
\[\text{ETA} = \begin{cases} 0.9 & \text{if } N > 1 \text{ and E04HEV is used as LSQLIN}, \\ 0.5 & \text{if } N > 1 \text{ and E04FCV is used as LSQLIN}, \\ 0.0 & \text{if } N = 1. \end{cases} \]

Constraint: \(0.0 \leq \text{ETA} < 1.0 \).

9: **XTOL** – real

Input

On entry: the accuracy in \(x \) to which the solution is required.

If \(x_{\text{true}} \) is the true value of \(x \) at the minimum, then \(x_{\text{sol}} \), the estimated position prior to a normal exit, is such that

\[\| x_{\text{sol}} - x_{\text{true}} \| < \text{XTOL} \times (1.0 + \| x_{\text{true}} \|), \]

where \(\| y \| = \sqrt{\sum_{j=1}^{n} y_j^2} \). For example, if the elements of \(x_{\text{sol}} \) are not much larger than 1.0 in modulus and if XTOL = 1.0E−5, then \(x_{\text{sol}} \) is usually accurate to about 5 decimal places. (For further details see Section 7.)

If \(F(x) \) and the variables are scaled roughly as described in Section 8 and \(\epsilon \) is the machine precision, then a setting of order XTOL = \(\sqrt{\epsilon} \) will usually be appropriate. If XTOL is set to 0.0 or some positive value less than \(10\epsilon \), E04GBF will use \(10\epsilon \) instead of XTOL, since \(10\epsilon \) is probably the smallest reasonable setting.

Constraint: \(\text{XTOL} \geq 0.0 \).

10: **STEPMX** – real

Input

On entry: an estimate of the Euclidean distance between the solution and the starting point supplied by the user. (For maximum efficiency, a slight overestimate is preferable.)
E04GBF will ensure that, for each iteration,

\[\sum_{j=1}^{n} (x_j^{(k)} - x_j^{(k-1)})^2 \leq (\text{STEPMX})^2 \]

where \(k \) is the iteration number. Thus, if the problem has more than one solution, E04GBF is most likely to find the one nearest to the starting point. On difficult problems, a realistic choice can prevent the sequence of \(x_j^{(k)} \) entering a region where the problem is ill-behaved and can help avoid overflow in the evaluation of \(F(x) \). However, an underestimate of STEPMX can lead to inefficiency.

Suggested value: STEPMX = 100000.0.

Constraint: STEPMX \(\geq \) XTOL.

11: \(X(N) \) – *real* array

\[\text{Input/Output} \]

On entry: \(X(j) \) must be set to a guess at the \(j \)th component of the position of the minimum, for \(j = 1, 2, \ldots, N \).

On exit: the final point \(x_j^{(k)} \). Thus, if IFAIL = 0 on exit, \(X(j) \) is the \(j \)th component of the estimated position of the minimum.

12: \(\text{FSUMSQ} \) – *real* array

\[\text{Output} \]

On exit: the value of \(F(x) \), the sum of squares of the residuals \(f_i(x) \), at the final point given in \(X \).

13: \(\text{FVEC}(M) \) – *real* array

\[\text{Output} \]

On exit: the value of the residual \(f_i(x) \) at the final point given in \(X \), for \(i = 1, 2, \ldots, m \).

14: \(\text{FJAC}(LJ,N) \) – *real* array

\[\text{Output} \]

On exit: the value of the first derivative \(\frac{\partial f_i}{\partial x_j} \) evaluated at the final point given in \(X \), for \(i = 1, 2, \ldots, m; j = 1, 2, \ldots, n \).

15: \(LJ \) – *INTEGER* array

\[\text{Input} \]

On entry: the first dimension of the array \(\text{FJAC} \) as declared in the (sub)program from which E04GBF is called.

Constraint: LJ \(\geq M \).

16: \(S(N) \) – *real* array

\[\text{Output} \]

On exit: the singular values of the Jacobian matrix at the final point. Thus \(S \) may be useful as information about the structure of the user’s problem.

17: \(\text{V}(LV,N) \) – *real* array

\[\text{Output} \]

On exit: the matrix \(V \) associated with the singular value decomposition \(J = UV^T \) of the Jacobian matrix at the final point, stored by columns. This matrix may be useful for statistical purposes, since it is the matrix of orthonormalised eigenvectors of \(J^TJ \).

18: \(LV \) – *INTEGER* array

\[\text{Input} \]

On entry: the first dimension of the array \(V \) as declared in the (sub)program from which E04GBF is called.

Constraint: LV \(\geq N \).
19: NITER – INTEGER
 \textit{Output}
 \textit{On exit}: the number of iterations which have been performed in E04GBF.

20: NF – INTEGER
 \textit{Output}
 \textit{On exit}: the number of times that the residuals have been evaluated (i.e., the number of calls of LSQFUN). If E04HEV is used as LSQFUN, NF is also the number of times that the Jacobian matrix has been evaluated.

21: IW(LIW) – INTEGER array
 \textit{Workspace}

22: LIW – INTEGER
 \textit{Input}
 \textit{On entry}: the dimension of the array IW as declared in the (sub)program from which E04GBF is called.
 \textit{Constraint}: LIW \geq 1.

23: W(LW) – real array
 \textit{Workspace}

24: LW – INTEGER
 \textit{Input}
 \textit{On entry}: the dimension of the array W as declared in the (sub)program from which E04GBF is called.
 \textit{Constraints}:
 \begin{align*}
 LW & \geq 7 \times N + M \times N + 2 \times M + N \times N, \text{ if } N > 1 \\
 LW & \geq 9 + 3 \times M, \text{ if } N = 1.
 \end{align*}

25: IFAIL – INTEGER
 \textit{Input/Output}
 \textit{On entry}: IFAIL must be set to 0, \(-1\) or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details.
 \textit{On exit}: IFAIL = 0 unless the routine detects an error (see Section 6).
 For environments where it might be inappropriate to halt program execution when an error is detected, the value \(-1\) or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL \neq 0 on exit, the recommended value is \(-1\). \textbf{When the value \(-1\) or 1 is used it is essential to test the value of IFAIL on exit.}

6 \textbf{Error Indicators and Warnings}

If on entry IFAIL = 0 or \(-1\), explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:

\textbf{IFAIL} < 0

A negative value of IFAIL indicates an exit from E04GBF because the user has set IFLAG negative in LSQFUN. The value of IFAIL will be the same as the user’s setting of IFLAG.

\textbf{IFAIL} = 1

\textit{On entry}, \(N < 1, \)
or \(M < N, \)
or \(\text{MAXCAL} < 1, \)
or \(\text{ETA} < 0.0, \)
or \(\text{ETA} \geq 1.0, \)
or \(\text{XTOL} < 0.0, \)
or \(\text{STEPMX} < \text{XTOL}, \)
or \(\text{LJ} < M, \)
or \(\text{LV} < N, \)
or \(LIW < 1 \),
or \(LW < 7 \times N + M \times N + 2 \times M + N \times N \), when \(N > 1 \),
or \(LW < 9 + 3 \times M \), when \(N = 1 \).

When this exit occurs, no values will have been assigned to FSUMSQ, or to the elements of FVEC, FJAC, S or V.

IFAIL = 2

There have been MAXCAL calls of LSQFUN. If steady reductions in the sum of squares, \(F(x) \), were monitored up to the point where this exit occurred, then the exit probably occurred simply because MAXCAL was set too small, so the calculations should be restarted from the final point held in X. This exit may also indicate that \(F(x) \) has no minimum.

IFAIL = 3

The conditions for a minimum have not all been satisfied, but a lower point could not be found. This could be because XTOL has been set so small that rounding errors in the evaluation of the residuals and derivatives make attainment of the convergence conditions impossible.

IFAIL = 4

The method for computing the singular value decomposition of the Jacobian matrix has failed to converge in a reasonable number of sub-iterations. It may be worth applying E04GBF again starting with an initial approximation which is not too close to the point at which the failure occurred.

The values IFAIL = 2, 3 and 4 may also be caused by mistakes in LSQFUN, by the formulation of the problem or by an awkward function. If there are no such mistakes it is worth restarting the calculations from a different starting point (not the point at which the failure occurred) in order to avoid the region which caused the failure.

7 Accuracy

A successful exit (IFAIL=0) is made from E04GBF when (B1, B2 and B3) or B4 or B5 hold, where

\[
B1 \equiv \alpha^{(k)} \times \| p^{(k)} \| < (XTOL + \epsilon) \times (1.0 + \| x^{(k)} \|)
\]

\[
B2 \equiv \| F^{(k)} - F^{(k-1)} \| < (XTOL + \epsilon)^2 \times (1.0 + F^{(k)})
\]

\[
B3 \equiv \| g^{(k)} \| < \epsilon^{1/3} \times (1.0 + F^{(k)})
\]

\[
B4 \equiv F^{(k)} < \epsilon^2
\]

\[
B5 \equiv \| g^{(k)} \| < \left(\epsilon \times \sqrt{F^{(k)}} \right)^{1/2}
\]

and where \(\| . \| \) and \(\epsilon \) are as defined in Section 5 (XTOL), and \(F^{(k)} \) and \(g^{(k)} \) are the values of \(F(x) \) and its vector of first derivatives at \(x^{(k)} \).

If IFAIL = 0, then the vector in X on exit, \(x_{sol} \), is almost certainly an estimate of \(x_{true} \), the position of the minimum to the accuracy specified by XTOL.

If IFAIL = 3, then \(x_{sol} \) may still be a good estimate of \(x_{true} \), but to verify this the user should make the following checks. If

(a) the sequence \(\{ F(x^{(k)}) \} \) converges to \(F(x_{sol}) \) at a superlinear or a fast linear rate, and
(b) \(g(x_{sol})^T g(x_{sol}) < 10\epsilon \)

where \(T \) denotes transpose, then it is almost certain that \(x_{sol} \) is a close approximation to the minimum. When (b) is true, then usually \(F(x_{sol}) \) is a close approximation to \(F(x_{true}) \). The values of \(F(x^{(k)}) \) can be calculated in LSQMON, and the vector \(g(x_{sol}) \) can be calculated from the contents of FVEC and FJAC on exit from E04GBF.

Further suggestions about confirmation of a computed solution are given in the E04 Chapter Introduction.
8 Further Comments

The number of iterations required depends on the number of variables, the number of residuals, the behaviour of \(F(x) \), the accuracy demanded and the distance of the starting point from the solution. The number of multiplications performed per iteration of E04GBF varies, but for \(m \gg n \) is approximately \(n \times m^2 + O(n^3) \). In addition, each iteration makes at least one call of LSQFUN. So, unless the residuals and their derivatives can be evaluated very quickly, the run time will be dominated by the time spent in LSQFUN.

Ideally, the problem should be scaled so that, at the solution, \(F(x) \) and the corresponding values of the \(x_j \) are each in the range \((-1, +1)\), and so that at points one unit away from the solution \(F(x) \) differs from its value at the solution by approximately one unit. This will usually imply that the Hessian matrix of \(F(x) \) at the solution is well-conditioned. It is unlikely that the user will be able to follow these recommendations very closely, but it is worth trying (by guesswork), as sensible scaling will reduce the difficulty of the minimization problem, so that E04GBF will take less computer time.

When the sum of squares represents the goodness-of-fit of a nonlinear model to observed data, elements of the variance-covariance matrix of the estimated regression coefficients can be computed by a subsequent call to E04YCF, using information returned in the arrays S and V. See E04YCF for further details.

9 Example

To find least-squares estimates of \(x_1, x_2 \) and \(x_3 \) in the model

\[
y = x_1 + \frac{t_1}{x_2^2 + x_3^2}
\]

using the 15 sets of data given in the following table.

<table>
<thead>
<tr>
<th>(y)</th>
<th>(t_1)</th>
<th>(t_2)</th>
<th>(t_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>1.0</td>
<td>15.0</td>
<td>1.0</td>
</tr>
<tr>
<td>0.18</td>
<td>2.0</td>
<td>14.0</td>
<td>2.0</td>
</tr>
<tr>
<td>0.22</td>
<td>3.0</td>
<td>13.0</td>
<td>3.0</td>
</tr>
<tr>
<td>0.25</td>
<td>4.0</td>
<td>12.0</td>
<td>4.0</td>
</tr>
<tr>
<td>0.29</td>
<td>5.0</td>
<td>11.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.32</td>
<td>6.0</td>
<td>10.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.35</td>
<td>7.0</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.39</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>0.37</td>
<td>9.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>0.58</td>
<td>10.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>0.73</td>
<td>11.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>0.96</td>
<td>12.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>1.34</td>
<td>13.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.10</td>
<td>14.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4.39</td>
<td>15.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Before calling E04GBF, the program calls E04YAF to check LSQFUN. It uses (0.5, 1.0, 1.5) as the initial guess at the position of the minimum.

9.1 Program Text

Note: the listing of the example program presented below uses **bold italicised** terms to denote precision-dependent details. Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations.
* .. Arrays in Common ..

```fortran
real T(M,NT), Y(M)
```

* .. Local Scalars ..

```fortran
real ETA, FSUMSQ, STEPMX, XTOL
integer I, IFAIL, IPRINT, J, MAXCAL, NF, NITER
```

* .. Local Arrays ..

```fortran
real FJAC(LJ,N), FVEC(M), G(N), S(N), V(LV,N), W(LW), + X(N)
integer IW(LIW)
```

* .. External Functions ..

```fortran
real X02AJF
EXTERNAL X02AJF
```

* .. External Subroutines ..

```fortran
EXTERNAL E04GBF, E04HEV, E04YAF, LSQFUN, LSQGRD, LSQMON
```

* .. Intrinsic Functions ..

```fortran
INTRINSIC SQRT
```

* .. Common blocks ..

```fortran
COMMON Y, T
```

* .. Executable Statements ..

```fortran
WRITE (NOUT,*) 'E04GBF Example Program Results'
* Skip heading in data file
READ (NIN,*)
* Observations of TJ (J = 1, 2, 3) are held in T(I, J)
* (I = 1, 2, . . . , 15)
DO 20 I = 1, M
  READ (NIN,*) Y(I), (T(I,J),J=1,NT)
20 CONTINUE
* Check LSQFUN by calling E04YAF at an arbitrary point
X(1) = 0.19e0
X(2) = -1.34e0
X(3) = 0.88e0
IFAIL = 0
* CALL E04YAF(M,N,LSQFUN,X,FVEC,FJAC,LJ,IW,LIW,W,LW,IFAIL)
* Continue setting parameters for E04GBF
* Set IPRINT to 1 to obtain output from LSQMON at each iteration *
IPRINT = -1
MAXCAL = 50*N
* Since E04HEV is being used as LSQIN, we set ETA to 0.9
ETA = 0.9e0
XTOL = 10.0e0*SQRT(X02AJF())
* We estimate that the minimum will be within 10 units of the
* starting point
STEPSX = 10.0e0
* Set up the starting point
X(1) = 0.5e0
X(2) = 1.0e0
X(3) = 1.5e0
IFAIL = 1
* CALL E04GBF(M,N,E04HEV,LSQFUN,LSQMON,IPRINT,MAXCAL,ETA,XTOL, + STEPSX,X,FSUMSQ,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,LIW,W, + LW,IFAIL)
* IF (IFAIL.NE.0) THEN
WRITE (NOUT,*) 'Error exit type', IFAIL,
  ' - see routine document'
END IF
IF (IFAIL.NE.1) THEN
WRITE (NOUT,99999) 'On exit, the sum of squares is', FSUMSQ
WRITE (NOUT,99998) 'at the point', (X(J),J=1,N)
CALL LSQGRD(M,N,FVEC,FJAC,LJ,S,V,LV,NITER,NF,IW,LIW,W, + LW,IFAIL)
```

E04GBF

NAG Fortran Library Manual

E04GBF.10

[NP3546/20A]
SUBROUTINE LSQFUN(IFLAG,M,N,XC,FVECC,FJACC,LJC,IW,LIW,W,LW)
* Routine to evaluate the residuals and their 1st derivatives.
* This routine is also suitable for use when E04FCV is used as
* LSQLIN, since it can deal with IFLAG = 0 as well as IFLAG = 2.
*
* .. Parameters ..
INTEGER MDEC, NT
PARAMETER (MDEC=15, NT=3)
* .. Scalar Arguments ..
INTEGER IFLAG, LIW, LJC, LW, M, N
* .. Array Arguments ..
real FJACC(LJC,N), FVECC(M), W(LW), XC(N)
INTEGER IW(LIW)
* .. Arrays in Common ..
real T(MDEC,NT), Y(MDEC)
* .. Local Scalars ..
real DENOM, DUMMY
INTEGER I
* .. Common blocks ..
COMMON Y, T
* .. Executable Statements ..
DO 20 I = 1, M
 DENOM = XC(2)*T(I,2) + XC(3)*T(I,3)
 FVECC(I) = XC(1) + T(I,1)/DENOM - Y(I)
 IF (IFLAG.EQ.0) GO TO 20
 FJACC(I,1) = 1.0
 DUMMY = -1.0/(DENOM*DENOM)
 FJACC(I,2) = T(I,1)*T(I,2)*DUMMY
 FJACC(I,3) = T(I,1)*T(I,3)*DUMMY
20 CONTINUE
RETURN
END

SUBROUTINE LSQMON(M,N,XC,FVECC,FJACC,LJC,S,IGRADE,NITER,NF,IW,LIW,W,LW)
* Monitoring routine
*
* .. Parameters ..
INTEGER NDEC
PARAMETER (NDEC=3)
INTEGER NOUT
PARAMETER (NOUT=6)
* .. Scalar Arguments ..
INTEGER IGRADE, LIW, LJC, LW, M, N, NF, NITER
* .. Array Arguments ..
real FJACC(LJC,N), FVECC(M), S(N), W(LW), XC(N)
INTEGER IW(LIW)
* .. Local Scalars ..
real FSUMSQ, GTG
INTEGER J
* .. Local Arrays ..
real G(NDEC)
* .. External Functions ..
real F06EAF
EXTERNAL F06EAF
* .. External Subroutines ..
EXTERNAL LSQGRD
* .. Executable Statements ..
FSUMSQ = F06EAF(M,FVECC,1,FVECC,1)
CALL LSQGRD(M,N,FVECC,FJACC,LJC,G)
GTG = F06EAF(N,G,1,G,1)
WRITE (NOUT,*)
WRITE (NOUT,99999) NITER, NF, FSUMSQ, GTG, IGRADE

STOP
* 99999 FORMAT (1X,A,I3,A)
99998 FORMAT (1X,A,3F12.4)
99997 FORMAT (1X,A,1P,3e12.3)
99996 FORMAT (1X,1P,3e9.1)
END
WRITE (NOUT,*)
WRITE (NOUT,*)
+ ' X G Singular values'
DO 20 J = 1, N
WRITE (NOUT,99998) XC(J), G(J), S(J)
20 CONTINUE
RETURN
* 99999 FORMAT (1X,I4,6X,I5,6X,1P,
99998 FORMAT (1X,1P,
END
* SUBROUTINE LSQGRD(M,N,FVECC,FJACC,LJC,G)
* Routine to evaluate gradient of the sum of squares
* .. Scalar Arguments ..
INTEGER LJC, M, N
* .. Array Arguments ..
real FJACC(LJC,N), FVECC(M), G(N)
* .. Local Scalars ..
real SUM
INTEGER I, J
* .. Executable Statements ..
DO 40 J = 1, N
 SUM = 0.0
 DO 20 I = 1, M
 SUM = SUM + FJACC(I,J)*FVECC(I)
 20 CONTINUE
G(J) = SUM + SUM
40 CONTINUE
RETURN
END

9.2 Program Data
E04GBF Example Program Data
0.14 1.0 15.0 1.0
0.18 2.0 14.0 2.0
0.22 3.0 13.0 3.0
0.25 4.0 12.0 4.0
0.29 5.0 11.0 5.0
0.32 6.0 10.0 6.0
0.35 7.0 9.0 7.0
0.39 8.0 8.0 8.0
0.37 9.0 7.0 7.0
0.58 10.0 6.0 6.0
0.73 11.0 5.0 5.0
0.96 12.0 4.0 4.0
1.34 13.0 3.0 3.0
2.10 14.0 2.0 2.0
4.39 15.0 1.0 1.0

9.3 Program Results
E04GBF Example Program Results
On exit, the sum of squares is 0.0082
at the point 0.0824 1.1330 2.3437
The corresponding gradient is 1.199E-09 -1.865E-11 1.807E-11
(machine dependent)
and the residuals are
-5.9E-03
-2.7E-04
2.7E-04
6.5E-03
-8.2E-04
-1.3E-03
-4.5E-03
-2.0E-02
8.2E-02
-1.8E-02
-1.5E-02
-1.5E-02
-1.1E-02
-4.2E-03
 6.8E-03