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Abstract

Functional methods are developed in order to study the non-perturbative aspects of Yang-Mills theories.
The path integral formulation of quantum mechanics is derived and then used to build a functional formal-
ism for quantum field theory. Based on these methods, the BPST instanton solution is derived and used to
study the vacuum structure of pure Yang-Mills theories. Then after discussing fermionic functional meth-
ods, the anomaly in the axial current of massless quantum electrodynamics is deduced. This derivation
requires renormalization, and so a gauge invariant cut-off regulator introduced and used to to eliminate
the divergences.

1



Contents

1 Introduction 3

2 The Path Integral Formulation 3
2.1 Time Evolution in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Path Integrals in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Path Integrals in Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Bosonic Quantum Field Theory 7
3.1 Free Scalar Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Fermions and Spinor Fields 10
4.1 The Lorentz Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Spinors and Spinor Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Dirac and Weyl Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Fermionic Quantum Field Theory 14
5.1 Grassman Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 The Fermionic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Free Spinor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Gauge and Yang-Mills Theories 17
6.1 Basics of Yang-Mills Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Euclidean Formulation of Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Instantons and Θ-Vacua in Yang-Mills Theories 19
7.1 Self Duality and The BPST Instanton . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.2 Θ-Vacua and CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Chiral Anomalies in Yang-Mills Theories 26
8.1 QED Symmetries and Pion Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 Abelian Chiral Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 Gauge Invariant Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

9 Conclusion 31

2



1 Introduction

In this report, we explore some of the non-perturbative aspects of quantum field theories, or more
specifically SU(N) Yang-Mills theories. Such non-perturbative effects are instantons, which are
completely absent in perturbation theory. This is due to the fact that they describe the transition
of the system from one vacuum to another and hence perturbation around one minimum of the
potential does not reveal information about tunneling to other minima. Such tunnelling effects
in quantum mechanics or quantum field theory happen via instantons. These instanton effects
also turn out to be very important in the renormalization of Yang-Mills theories and many of the
methods developed here are necessary to study renormalizability. Yang-Mills instantons were first
discovered more that 30 years ago by Belavin, Polyakov, Schwartz and Tyupkin [1], and they still
remain a key area of study in field theory. It was then realised by t’ Hooft [2], Jackiw and Rebbi [3],
that these same methods can be used to study the vacuum structure of Yang-Mills theories. By the
end of the 70s instantons became important tools in solving unanswered problems in gauge theories,
like chiral anomalies.

We build on the above developments, to construct a theory in which we can further study these
fascinating objects. In Section 2, we reformulate quantum mechanics and then quantum field theory
in terms of functional integrals. This formulation is a lot more powerful in tackling non-perturbative
problems than the usual canonical approach. In Section 3, we then build up scalar QFT, while in
sections 4 and 5 we extend the discussion to fermionic spinor fields. We then move on to discuss
some of the non-perturbative aspects of Yang-Mills theories in Section 6, which we will then use
to derive the BPST instanton solutions in Section 7. The final part of the report is devoted to
discussing the chiral anomaly.

2 The Path Integral Formulation

In this section we will present an alternative formulation of quantum mechanics, and then quantum
field theory, which relies on the direct evaluation of the time evolution operator via the method of
functional integrals. This method was first pioneered and used in field theory by Richard Feynman
to calculate QED amplitudes, but has since become a standard tool in studying the non-perturbative
aspects of quantum field theory. We now proceed to provide the derivation of this formalism by
first looking at time evolution in ‘ordinary’ quantum mechanics, and then introducing the functional
formalism in quantum mechanics and quantum field theory respectively.

2.1 Time Evolution in Quantum Mechanics

Quantum Mechanics is a self-contained theory based on a finite number of postulates or axioms.
As these axioms introduce the notation and some of the conventions used, we therefore state that
in quantum mechanics:

(i) The state of a system is given by a normalised vector |ψ〉 in Hilbert space.

(ii) To each of the observables x and p, there corresponds a Hermitian operator X̂ and P̂ such
that

[X̂i, P̂j] = i~δij.

All other observables ω also have a corresponding Hermitian operator Ω̂ = Ω̂(X̂, P̂ ).
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(iii) Measurements of an observable ω yield one of the eigenvalues ωi of Ω̂ with probability

P (ωi) = | 〈ωi|ψ〉 |2.

(iv) The time evolution of a system is given by the Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 ,

where Ĥ is the Quantum Hamiltonian of the system.

It is possible to find an operator U(t, t0), such that it completely gives the time evolution of the
system, i.e.

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 ,

where we call U(t, t0) the time evolution operator. Starting from the Schrödinger equation the form
of this operator is derived as follows:

i~∂t |ψ(t)〉 = Ĥ |ψ(t)〉

|ψ(t+ δt)〉 − |ψ(t)〉 = − i
~
Ĥδt |ψ(t)〉

|ψ(t+ δt)〉 =

(
1− i

~
Ĥδt

)
|ψ(t)〉 .

We now write δt = t− t0 = limN→∞
∑N t−t0

N
and use the above expression to get

|ψ(t+ δt)〉 = lim
N→∞

∣∣∣∣∣ψ
(
t0 +

N∑ t− t0
N

)〉

= lim
N→∞

(
1− i

~
Ĥ
t− t0
N

)N
|ψ(t0)〉

= e−iĤ(t−t0)/~ |ψ(t0)〉 .

Hence we have found that the time evolution operator U(t, t0) is a unitary operator of the form

U(t, t0) = e−iĤ(t−t0)/~. (2.1)

This means that if one knows the eigenvalues and eigenfunctions of the Hamiltonian, i.e. the solution
to the time independent Schrödinger equation, we can gain the full time evolution of the system by
(2.1).

2.2 Path Integrals in Quantum Mechanics

The general approach in canonical quantum mechanics is to find the eigenfunctions and eigenvalues
of the Hamiltonian and then use these to find an expression for the time evolution operator. The
path integral approach to quantum mechanics, aims to compute the time evolution directly without
the need to use the Schrödinger equation. We will properly derive this result in due course, but
we first write down the result we are trying to achieve. To find the kernel 〈x|U(t)|x′〉, i.e. the
matrix element of U(t), in one dimension using the path integral formulation, we must follow the
procedure:
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Figure 1: Schematics for the path integral formulation with xcl(t) being the classical path.

(i) Draw all paths x1(t), x2(t) · · · in the x − t plane connecting (x0, t0) and (x1, t1), as shown in
Figure 1;

(ii) Find the action S[x(t)] for each path xi(t);

(iii) The kernel is then given by

K(x, x′) ≡ 〈x|U(t)|x′〉 = A
∑
i

eiS[xi(t)]/~, (2.2)

where A is a normalization constant.

We now proceed to derive the above formalism and prove (2.2). Consider the Hamiltonian

Ĥ = − P̂2

2m
+ V (X̂),

which has the corresponding time evolution operator

U(t, 0) = U(t) = e−iĤt/~,

derived in Section 2.1. In the special case when V (X̂) = 0, i.e. for a free particle, the matrix
element of the propagator can be evaluated by simply using Gaussian integrals, which gives

〈x′| e−it(P̂2/2m)/~ |x〉 =
( m

2πi~t

)1/2

e
im(x′−x)2

2~t . (2.3)

Returning to the general case, we may write

U(t) = e−iĤt/~ =
(
e−iĤt/N~

)N
for any N ≥ 0. This means that we have expressed U(t) as a product of N operators U(t/N). We
now define ε = t/N and consider the limit as N →∞ or equivalently ε→ 0. In this limit we may
write1

e−iε(P̂
2/2m+V (X̂))/~ ' e−iε(P̂

2/2m)/~ × e−iεV (X̂)/~, (2.4)

1This is a consequence of the Baker-Campbell-Hausdorff formula eÂeB̂ = eÂ+B̂+1/2[Â,B̂]+···, where Â and B̂ are
arbitrary operators.
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which becomes an exact relation in the above limit. Thus, it now remains to compute the kernel

K(x, x′) = 〈x|U(t)|x′〉 = 〈x| e−iε(P̂2/2m)/~e−iεV (X̂)/~ × · · · × e−iε(P̂2/2m)/~ × e−iεV (X̂)/~

N times

|x′〉 . (2.5)

This is done by inserting the completeness relation

I =

∫
dx |x〉 〈x|

between each term, i.e. N − 1 times. Rename |x0〉 = |x′〉 and |xN〉 = |x〉, a general term in (2.5)
then looks like

〈xn| e−iε(P̂
2/2m)/~ |xn−1〉 e−iεV (xn−1)/~

where we have used that X̂ |x〉 = x |x〉. The remaining matrix element i just the free particle kernel
(2.3) from xn−1 to xn in time ε. Putting these results together we have found that

K(xN , x0) = 〈xN |U(t)|x0〉 =
( m

2πi~ε

)N/2 N−1∏
n=1

∫
dxn e

∑N
n=1

(
im(xn−xn−1)

2

2~ε − iε~ V (xn−1)

)
. (2.6)

Notice that the integrand is just a discretised version of eiS[x(t)]/~, by writing

e
∑N
n=1

(
im(xn−xn−1)

2

2~ε − iε~ V (xn−1)

)
= e

iε
~
∑N
n=1

(
m(xn−xn−1)

2

2ε2
−V (xn−1)

)
.

Thus taking the continuum limit, the kernel becomes

K(x, x′) = 〈x|U(t)|x′〉 =

∫
D[x]e

i
~
∫ t
0 L(x,ẋ)dt, (2.7)

where ∫
D[x] =

( m

2πi~ε

)N/2 N−1∏
n=1

∫
dxn (2.8)

is called the path integral measure. This is a functional integral, i.e. we are integrating over all
possible paths x(t) between x and x′. We will now show how this approach generalises to infinite
degrees of freedom in quantum field theory.

2.3 Path Integrals in Quantum Field Theory

The derivation of the path integral formalism in quantum field theory is much the same as in
quantum mechanics, though there are a few subtle differences. Instead of operators X̂ and P̂ we
now have the Schrödinger picture field operator φ̂(x) and its conjugate π̂(x). Equivalent to

∣∣x〉 we
have a complete set of eigenstates

ψ̂(x)
∣∣Ψ〉 = φ(x)

∣∣Ψ〉
π̂(x)

∣∣Π〉 = π(x)
∣∣Π〉,

where the eigenvalues φ(x) and π(x) are now a function of space [4]. The conjugate relation,
analogous to

〈
x|p
〉

= exp{−ipx}, is given by

〈Π|Φ〉 = e−i
∫
d3xπ(x)φ(x).

6



The inner product between states is then〈
Φ|Φ′

〉
=

∫
D[Π]

〈
Φ|Π

〉〈
Π|Φ′

〉
=

∫
D[Π]e−i

∫
d3xπ(x)(φ(x)−φ′(x)),

where the D[Π] denotes a functional integration over all possible functions π(x). Thus we have
found the completeness relation of these QFT states, namely∫

D[Φ]
∣∣Φ〉〈Φ∣∣.

As in the QM derivation, we will use this completeness relation to evaluate transition amplitudes.

Consider the vacuum matrix element
〈
0; tf

∣∣0; ti
〉
, for which we can again insert n completeness

relations to give〈
0; tf

∣∣0; ti
〉

=

∫
D[Φ1] · · · D[Φn]

〈
0
∣∣e−iεĤ∣∣Φn

〉〈
Φn

∣∣ · · · ∣∣Φ1

〉〈
Φ1

∣∣e−iεĤ∣∣0〉,
where ε has to be understood as in the context of the QM derivation with its limit taken to zero.
Now each separate piece becomes a Gaussian integral as before,2 and so the vacuum matrix element
becomes 〈

0; tf
∣∣0; ti

〉
= N

∫
D[Φ]eiS[φ], (2.9)

rather unsurprisingly. This tells us that we have to integrate over all allowed field configurations Φ.

3 Bosonic Quantum Field Theory

We now proceed to formulate quantum field theory in terms of these functional integrals. This
section is loosely based on [5] and [6]. It is general practice in functional field theory to introduce
the so called partition function, defined as

Z[J ] =

∫
D[φ] exp

{
i

∫
d4x (S[φ] + J(x)φ(x))

}
,

where J(x) is an ad hoc source term.3 Thus from above we have that Z[J ]|J=0 = 〈0|0〉, i.e setting
J = 0 gives back the vacuum matrix element. We will see that this partition function proves to be
very useful for perturbative and non-perturbative calculations, and essentially all the physics of a
system is encoded in its partition function.

3.1 Free Scalar Fields

Consider the Lagrangian for a free scalar field theory

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2, (3.1)

2Even though this integral is called a Gaussian integral, it differs from previous cases as it is a functional integral.
As it turns out though, it evaluates very similarly to the usual case.

3To gain any physical quantities, this source term will always be set to zero.
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where φ ≡ φ(x) is a real scalar field. The partition function is then given by

Z[J ] =

∫
D[φ] exp

{
i

∫
d4x

(
1

2
(∂µφ∂

µφ−m2φ2) + J(x)φ

)}
, (3.2)

where J(x) is the source term. We may integrate by parts in the exponent∫
d4x

1

2

(
∂µφ∂

µφ−m2φ2
)

= −
∫
d4x

1

2

(
φ∂µ∂µφ+m2φ2

)
,

where we have assumed that the field decays fast enough at infinity so that we can ignore boundary
terms. The field can also be rewritten as

φ(x) = φ0(x) + ϕ(x),

where φ0(x) is the ‘classical’ field, i.e the solution to

(∂µ∂
µ +m2)φ0 = J. (3.3)

This equation can be solved by finding the Green’s function G(x−x′) for the Klein-Gordon operator

− (∂µ∂
µ +m2)G(x− x′) = δ4(x− x′), (3.4)

where δ4(x − x′) is the four-dimensional Dirac delta function. We solve this equation by first
assuming that G(x− x′) can be written as a Fourier transform, i.e

G(x− x′) =

∫
d4k

(2π)4
G̃(k)eik(x−x′).

Acting on this equation with the Klein-Gordon operator gives

− (∂µ∂
µ +m2)G(x− x′) =

∫
d4k

(2π)4
G̃(k)(k2 −m2)eik(x−x′) = δ4(x− x′) =

∫
d4k

(2π)4
eik(x−x′), (3.5)

where we have used the Fourier definition of the delta function. The relation (3.5) shows that the
Green’s function takes the form

G̃(k) =
1

k2 −m2
, (3.6)

which in position space is4

G(x− x′) =

∫
d4k

(2π)4

eik(x−x′)

k2 −m2 + iε
. (3.7)

Hence now that we have found the Green’s function, we can write down solutions to (3.3) as

φ0(x) = −
∫
d4x′∆F (x− x′)J(x′).

We can use this result to rewrite the partition function (3.2) as

Z[J ] =

∫
D[ϕ] exp

{
i

∫
d4x

[
1

2
(∂µϕ∂

µϕ−m2ϕ2)

]
− i
∫
d4x′d4x′′ [J(x′)∆F (x′′ − x′)J(x′′)]

}
.

4The factor of iε comes from the standard method of avoiding poles.
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The second term in the exponential is now independent ϕ and hence can be taken out of the
functional integral to give

Z[J ] = exp

{
− i

2

∫
d4x′d4x′′ [J(x′)∆F (x′′ − x′)J(x′′)]

}∫
D[ϕ] exp

{
i

∫
d4x

[
1

2
(∂µϕ∂

µϕ−m2ϕ2)

]}
.

This prefactor outside the functional integral is just Z[0], which will be used as a normalisation
constant, i.e

Z[J ] = N exp

{
− i

2

∫
d4x′d4x′′ [J(x′)∆F (x′′ − x′)J(x′′)]

}
. (3.8)

What we have done here is reduced the infinite dimensional functional integral to two integrals over
four-dimensional spacetime.

The partition function (3.2) has some remarkable properties. One can realise that that the functional
derivative with respect to the current J(x1) gives

−i δZ

δJ(x1)
=

∫
D[ϕ]

(
exp

{
iS[ϕ] + i

∫
d4xJ(x)ϕ(x)

}
ϕ(x1)

)
,

and so evaluating this at J = 0 we gain

−i δZ

δJ(x1)

∣∣∣∣
J=0

=

∫
D[ϕ] exp {iS[ϕ]}ϕ(x1) = 〈0|φ(x1) |0〉 .

This is not coincidental. We define a new generating functional W [J ]

Z[J ] ≡ eiW [J ].

From (3.8) we already have an expression for this new functional

W [J ] = − i
2

∫
d4x′d4x′′ [J(x′)∆F (x′′ − x′)J(x′′)] .

We can now evaluate the functional derivatives of W [J ]

−i δW [J ]

δJ(x1)
=− i

2

∫
d4x′d4x′′

[
δ4(x1 − x′)∆F (x′′ − x′)J(x′′) + J(x′)∆F (x′′ − x′)δ4(x1 − x′′)

]
=− i

∫
dx′J(x′)∆F (x1 − x′).

This means that the functional derivative of the partition function Z[J ] gives

−i δZ[J ]

δJ(x1)
=− i δ

δJ(x1)
eiW [J ] = −i δW [J ]

δJ(x1)
Z[J ]

=

(
−i
∫
dx′J(x′)∆F (x1 − x′)

)
Z[J ],

where it is important to note that this vanishes for J = 0. In a similar fashion, the second functional
derivative yields

(−i)2 δ2Z

δJ(x1)δJ(x2)
= i∆F (x1 − x2)Z[J ] + i

(∫
dx′J(x′)∆F (x1 − x′)

)
δZ[J ]

δJ(x2)
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= i∆F (x1 − x2)Z[J ]− δZ[J ]

δJ(x1)

δZ[J ]

δJ(x2)
,

where now setting J = 0 gives i∆F (x1 − x2). Following this method, we find that each functional
derivative of the partition function will give us a new correlation function

Gn(x1, x2, · · · , xn) =
1

in

(
δ

δJ(x1)

δ

δJ(x2)
· · · δ

δJ(xn)

)
Z[J ]

∣∣∣∣
J=0

= 〈0|T{φ(x1)φ(x2) . . . φ(xn)} |0〉 .

(3.9)
For example, the four point Green’s function is given by

G4(x1, x2, x3, x4) =
1

i4

(
δn

δJ(x1)δJ(x2)δJ(x3)δj(x4)

)
Z[J ]

∣∣∣∣
J=0

=∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4) + ∆F (x1 − x4)∆F (x2 − x3),

which gives the diagrams:

x3 x4

x1 x2

x3 x4

x1 x2

x3 x4

x1 x2

Hence we have built a functional formalism which reproduces the results of the canonical approach,
although this above method only works for bosonic, i.e. scalar, fields. In order to include fermions,
we first have to introduce spinor fields.

4 Fermions and Spinor Fields

4.1 The Lorentz Group

Consider all isometries of Minkowski space X.

Definition. Let X be a (pseudo)Riemannian manifold with metric ηµν . The isometries of the
manifold X are diffeomorphisms F : X → X such that

ηµνx
νxµ = xµx

µ = xµ′x
µ′ ∀x ∈ X,

i.e preserves the metric.

This is the isometry group of X called the Poincaré group. A subgroup of this is the Lorentz group
SO(1, 3), which consists of all those isometries that leave the origin fixed, i.e xµx

µ = xµ′x
µ′ and

xµ|x=0 = xµ
′|x=0 ∀x ∈ X.5 We want to find representations D[Λ]ab of this group which suitably

describes spin-half particles. To do this we find the Lie algebra of the Lorentz group SO(1, 3) by
writing

Λµ
ν = δµν + ωµν ,

5Technically we are using the restricted Lorentz group SO+(1, 3), which consists of all those elements of SO(1, 3)
that preserve spacetime orientation.
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where ω is infinitesimal. Imposing the SO(1, 3) condition implies

Λµ
σΛν

ρη
σρ = ηµν =⇒ ωµν + ωνµ = 0,

that is the Lie algebra consists of all 4×4 antisymmetric matrices to be denoted (Mρσ)µν . Hence the
Lie algebra SO(1, 3) has 6 real degrees of freedom and hence 6 generators, each corresponding to
one of 3 rotations and 3 boosts. Notice that we have given two group indices [ρσ] for the generators
(Mρσ)µν instead of one, we will however require that [ρσ] be antisymmetric giving us the required
distinct generators. Writing the group index like this will prove to be useful for future calculations.
We can also express all 4× 4 antisymmetric matrices in terms of the metric as

(Mρσ)µν = ηρµησν − ησµηρν

(Mρσ)µν = ηµνδσν − ηµνδρν . (4.1)

Now we can rewrite any arbitrary element ωµν of the Lie algebra as

ωµν =
1

2
Ωρσ(Mρσ)µν ,

where Ωρσ ∈ R. The generators obey the algebra

[Mρσ,Mτν ] = ηστMρν − ηρτMσν + ηρνMστ − ησνMρτ . (4.2)

Any finite Lorentz transformation can thus be written as

Λ = e
1
2

ΩσρMσρ

.

4.2 Spinors and Spinor Representations

We seek further representations of SO(1, 3) satisfying the Lorentz algebra (4.2). To do this we first
consider a closely related algebra called the Clifford algebra, which consists of 4× 4 matrices γ such
that

{γµ, γν} ≡ γµγν + γνγµ = 2ηµν14, (4.3)

where 14 is the 4-dimensional identity matrix. This is satisfied by matrices with the following
properties: 

γµγν = −γνγµ if µ 6= ν

(γ0)2 = 14

(γi)2 = −14 for i = 1, 2, 3.

The simplest such representation of Clifford algebra is in 4-dimensions, for example, the matrices

γ0 =

(
0 12

12 0

)
; γi =

(
0 σi

−σi 0

)
, (4.4)

where σi are the Pauli matrices. One can also show that this representation is unique in 4-dimensions
up to a transformation MγµM−1, where M is any 4×4 invertible matrix. The above representation
(4.4) of the Clifford algebra is called the Weyl or Chiral representation.
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Now how does this relate to our Lorentz algebra? To answer this question, we have to look at the
commutators of these γ-matrices

Sρσ ≡ 1

4
[γρ, γσ] =

1

2
(γργσ − ηρσ), (4.5)

where we used the relation (4.3). These Sρσ-matrices have the following two properties that relate
them to the Lorentz algebra:

[Sρσ, γρ] = γµηνρ − γνηρµ if µ 6= ν;

[Sµν , Sρσ] = ηνρSµσ − ηµρSνσ + ηµσSνρ − ηνσSµρ.

Hence these matrices satisfy the Lorentz algebra (4.2), and we have found a new representation of
the Lie algebra SO(1, 3). Since the γ’s are 4× 4 matrices, the S’s are 4× 4 matrices as well and so
we denote them (Sµν)αβ with α, β = 1, 2, 3, 4.

At first sight, the difference between Λ and S[Λ] is not evident. We will therefore specifically
calculate their form for rotations and boosts separately:

(i) Rotations : The matrix Sij corresponding to rotations is given by

Sij =
1

2
(γiγj − ηij) =

1

2

(
0 σi

−σi 0

)(
0 σj

−σj 0

)
− 1

2
δij14 = − i

2
εijk

(
σk 0
0 σk

)
.

By writing Ωij = −εijkθk the representation can be expressed as

S[Λ] = e
1
2

ΩijS
ij

= e−
1
2
εijkθkSij =

(
eiθ·σ/2 0

0 eiθ·σ/2

)
,

where θ = (θ1, θ2, θ3) is the rotation angle. Now consider a rotation about the x3 axis by an
angle of 2π, i.e θ = (0, 0, 2π). In this case the S-representation takes the form

S[Λ] =

(
eiπσ

3
0

0 eiπσ
3

)
= −14.

On the other hand, for the same rotation

Λ = e
1
2

ΩσρMσρ

= 14,

where we have used the form of M-matrices shown in (4.1). Hence Λ and S[Λ] are truly
different representations.

(ii) Boosts : The matrix S0i corresponding to boosts is given by

S0i =
1

2
(γ0γi − η0i) =

1

2

(
0 σi

−σi 0

)(
0 σj

−σj 0

)
− 1

2
δ0i14 =

1

2

(
−σi 0

0 σi

)
.

We may again re-express Ωi0 = −Ω0i = χi in term of a vector χ, which gives

S[Λ] =

(
eχ·σ/2 0

0 e−χ·σ/2

)
= −14.

This also shows us that unlike Λ, S[Λ] is no longer unitary, i.e S†[Λ]S[Λ] 6= 1.

12



4.3 Dirac and Weyl Spinors

All this was done in order to introduce a field that describes fermions. Motivated by the above
discussion we define a fermionic field.

Definition. A Lie algebra valued field ψα(x) is called a Dirac spinor field if under Lonrentz
transformations it transforms as

ψα(x)→ S[Λ]αβψ
β(x),

i.e under the S-representation of SO(1, 3).

In the following sections we will see that such fields indeed poses fermionic properties. We have
seen that in the Weyl representation of the γ-matrices the S-representation of the Lorentz algebra
becomes

S[Λrot] =

(
eiθ·σ/2 0

0 eiθ·σ/2

)
(4.6)

S[Λboost] =

(
eχ·σ/2 0

0 e−χ·σ/2

)
, (4.7)

which is block diagonal. This means that S is a reducible representation of the Lorentz algebra.
It decomposes into two irreducible representations, which act separately on two component spinors
u±(x) defined by

ψα(x) =

(
uα+(x)
uα−(x)

)
,

where u±(x) are called Weyl spinors. From equations (4.6) and (4.7) we see that these Weyl spinors
transform under Lorentz transformations as

u±(x)
rot−→ eiθ·σ/2 u±(x)

u±(x)
boost−−−→ e±χ·σ/2 u±(x).

In other words, this means that u+ is an element of the (1/2, 0) representation of the Lorentz group,
while u− is in the (0, 1/2) representation. Hence the Dirac spinor field ψ is in the (1/2, 0)⊕ (0, 1/2)
representation of SO(1, 3).

The matrices (4.6) and (4.7) were only of a block diagonal form because we were working in a specific
representation (4.4) for the γ-matrices. In an arbitrary representation of the Clifford algebra, these
matrices are not generally block diagonal. There is an easy way of avoiding this problem and
invariantly define spinors in even dimensions by using the so called fifth γ-matrix

γ5 = −iγ0γ1γ2γ3.

Surprisingly, this new matrix also satisfies all the relations the other γ-matrices do, i.e

{γ5, γµ} = 0 ; (γ5)2 = 1.

We can use this to define a Lorentz invariant projection operator

P± ≡
1

2
(1± γ5),
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which projects four-component spinors onto two-component spinors. For example, in the Weyl
representation γ5 = diag(1, 1,−1,−1) and so

P±ψ(x) = u±(x),

so in the Weyl representation P± projects Dirac spinors onto Weyl spinors. In an arbitrary repre-
sentation we will still have

ψ± = P±ψ,

where the left hand side is a two component spinor and the right hand side is a four component
Dirac spinor. We sometimes call ψ+ left handed and ψ− right handed spinors.

5 Fermionic Quantum Field Theory

We will now proceed to formulate the path integral partition function for fermionic fields described
in section 4. Some of the material in this section is based on [7] and [4]. The first important
observation is that while scalar fields commute, the fermionic fields anti-commute, i.e

{ψα(x), ψβ(x′)} = {ψ†α(x), ψ†β(x′)} = 0.

This means that to describe spinor fields, we have to develop a formalism for dealing with anti-
commuting variables in functional calculus.

5.1 Grassman Analysis

Definition. The Grassman variables θi form an algebra over the complex number field such that
the generators satisfy the anti-commutation relation

{θi, θj} ≡ θiθj + θjθi = 0,

for all θ.

It immediately follows from this definition that Grassman numbers square to zero, i.e θ2
i = 0. This

also implies that a general function written as

f(θ) = a+ aiθi +
1

2
aijθiθj + · · ·+ 1

n!
ai1···inθi1θi2 · · · θin , (5.1)

has all anti-symmetric coefficients ai1i2··· and that this sum truncates at finite n. We can define
differentiation with respect to these variables by requiring that the differentials also anti-commute,
that is satisfy the condition

∂

∂θi
θj + θj

∂

∂θi
= 0.

In remains to to formulate integration with respect to these odd variables.

We will now define such integrals for functions of Grassman numbers f(θ), called Berezinian inte-
grals, in analogy with standard integration. For our definition to be sensible and consistent, one we
must require that

(i) Linearity ∫
dθ(af(θ) + bg(θ)) = a

∫
dθf(θ) + b

∫
dθg(θ);

14



(ii) Partial integration ∫
dθ

∂

∂θ
f(θ) = 0,

where f, g are smooth functions and the integrals are over all space. It directly follows that we can
write ∫

dθ = 0∫
dθ θ = 1.

It is interesting to note that ∫
dθ(af(θ) + b) = b =

∂

∂θ
(af(θ) + b),

hence, in this case, differentiation is the same as integration. We can also extend integration to
higher dimensions by defining the n-volume form

dnθ = dθn ∧ dθn−1 ∧ · · · ∧ dθ1,

where all of the 1-forms anti-commute, i.e

dθi ∧ dθj = −dθj ∧ dθi.

Using the expansion (5.1) for a general function f(θ) we can write down some formulas for these
Berezinian integrals: ∫

dnθ f(θ) =
1

n!
εi1i2···inai1···inθi1θi2 · · · θin∫

dnθ θi1θi2 · · · θin = εi1i2···in ,

where εi1i2···in is an n-dimensional totally anti-symmetric tensor.

It is also very interesting to look at what happens to the volume n-forms under changes of variables.
Consider the transformation θ → θi′ = Aijθj, where Aij is just a square matrix. Under such
transformation, the integral behaves as∫

dnθ f(Aθ) =
1

n!
εi1i2···inai1···inA1i1A2i2 · · ·Anin = (detA)a1···n =

1

n!
(detA)

∫
dnθf(θ),

where we have used the Leibnitz formula for calculating the determinant. Hence we have found
that the volume element transforms as

dnθ′ = (detA)−1dnθ, (5.2)

which means that it transforms with the inverse Jacobian. This is very fascinating as for ordinary
variables x we had that

dnx′ = (detA)dnx,

i.e they transform with the Jacobian. We also state without proof here the formula for Gaussian
integrals of Grassman variables ∫

dnθdnθ̄ eθ̄iAijθj = detA, (5.3)

where θ̄i are just the conjugate variables. This is also differs form the bosonic case where the integral
is proportional to the square root of the determinant.

15



5.2 The Fermionic Oscillator

As quantum field theory is essentially described by a harmonic oscillator at every spacetime point,
so it is natural to first discuss the formulation of a fermionic oscillator before attempting to tackle
fermionic field theory. A ferminonic harmonic oscillator can be be described by introducing creation
and annihilation operators b̂†, b̂ such that

b̂2 = (b̂†)2 = 0; {b̂†, b̂} = 1.

These operators can then be used to define states. First the vacuum state |0〉 which satisfies

b̂ |0〉 = 0,

and then an excited state |1〉 such that

|1〉 = b̂† |0〉 .

This implies that we have a two dimensional vector space of states, with basis |0〉, |1〉, such that

b̂† |1〉 = 0; b̂ |1〉 = |0〉 .

Thus if we choose the basis

|0〉 =

(
1
0

)
; |1〉 =

(
0
1

)
,

then the creation and annihilation operators take the form

b̂† =

(
0 0
1 0

)
; b̂ =

(
0 1
0 0

)
.

It is convenient, due to the nature of fermionic states, to introduce states labelled by Grassman
variables

|θ〉 = |0〉+ θ |1〉 ; 〈θ̄| = 〈0|+ θ̄ 〈1| ,
where we now have

b̂ |θ〉 = θ |θ〉 ; 〈θ̄| b̂† = θ̄ 〈θ̄| .
Our goal is to formulate path integrals in such a theory and to do so we must introduce the
Hamiltonian of this system

Ĥ = ωb̂†b̂ =

(
0 0
0 ω

)
, (5.4)

where the matrix form is expressed in the |0〉, |1〉 basis. We can now write the time evolution of
this system from state |θ〉 to state |θ̄〉 using (2.1)〈

θ̄
∣∣ e−iĤt |θ〉 = 〈0|0〉+ θ̄θ

〈
1|e−iωt|1

〉
= 1 + θ̄θe−iωt = eθ̄θe

−iωt
,

where for the last equality we used that the series expansion of the exponential truncates at first
order. The inner product of these states can also be evaluated to give〈

θ̄
∣∣ θ′〉 = e

1
2
θ̄θ+ 1

2
θ̄θ′+θ̄θ̄′ . (5.5)

In analogy with the bosonic case, we need to introduce a completeness relation∫
dθ̄dθeθ̄θ |θ〉

〈
θ̄
∣∣ = |0 〉〈 0|+ |1 〉〈 1| = 1, (5.6)

where we used that mixed terms like |0 〉〈 1| do not contribute to the integral. We will use this to
construct the path integral for fermionic fields similarly to the bosonic case.
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5.3 Free Spinor Fields

Having seen how a fermionic oscillator works, we now proceed to formulate the theory for free
fermionic fields. We want to express the time evolution of fermionic systems in terms of path
integrals. As in the bosonic case, we insert N completeness relations (5.6) into the kernel and
discretise time T = (N + 1)ε to give

〈θ̄N |e−iĤε|θ0〉 =

∫ ( N∏
k=1

dθ̄kdθke
θ̄kθk

)
〈θ̄k|e−iĤε|θk−1〉 〈θ̄k−1|e−iĤε|θk−2〉 · · · 〈θ̄1|e−iĤε|θ0〉 ,

in the limit as N →∞, ε→ 0 One typical term in this expression evaluates to

〈θ̄k|e−iεĤ |θk−1〉 = 〈θ̄k|(1− iεĤ +O(ε2))|θk−1〉
=(1− iεωθ̄kθk−1) 〈θ̄k|θk−1〉
=e−iωθ̄nθn−1− 1

2
θnθ̄n− 1

2
θ̄n−1θn−1+θ̄nθ̄n−1 ,

where we have used (5.5) and the specific form of the Hamiltonian (5.4). In the continuum time
limit this becomes

lim
ε→0

e−iωθ̄nθn−1− 1
2
θnθ̄n− 1

2
θ̄n−1θn−1+θ̄nθ̄n−1 = eiεθ̄(t)(

i
2
∂t−ω)θ(t).

Thus taking the product of all the terms gives

K(θ̄N , θ0) =

∫ N∏
k=1

dθ̄kdθke
iθ̄kθke

iS[θ,θ̄] =

∫
D[θ]D[θ̄]eiS[θ,θ̄].

Thus we have found the kernel for fermionic quantum mechanics. Similarly to the scalar field case,
this readily generalises to field theory, where the path integral formula becomes

K(ψ, ψ̄) = N

∫
D[ψ̄]D[ψ]eiS[ψ̄,ψ]. (5.7)

We see that the fermionic path integral looks very much the same as the bosonic one. Essentially,
the only difference is that in the fermionic case one has to take care about the non-commuting
Grassman variables when manipulating the above formula.

6 Gauge and Yang-Mills Theories

In this section we give a short introduction to Yang-Mills theories, which will also give us a chance
to fix some of the conventions used later on. Yang-Mills theories form a big part of physics as the
standard model is a SU(N) Yang-Mills theory, hence to our best knowledge nature is best described
by Yang-Mills theories and Gauge fields.

6.1 Basics of Yang-Mills Theories

We first define some of terms we use to build up the theory.

Definition. A gauge theory is a field theory in which the Lagrangian is invariant under a group
continuous local transformations called the gauge group.
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Definition. A Yang-Mills theory is a gauge theory based on the gauge group SU(N), or more
generally any compact Lie group.

We will be using the following conventions regarding the SU(N) group:

(i) Trace of generators: Tr(T aT b) = 1
2
δab;

(ii) Commutator of generators: [T a, T b] = ifabcT c;

(iii) Cartan metric: gab = δab;

where T a are the generators, F abc are the structure constants and gab is the Cartan metric of SU(N).
The Yang-Mills field strength is defined as

Fµν ≡ F a
µνT

a = ∂µAν − ∂νAµ + i[Aµ, Aν ], (6.1)

which implies
F a
µν = ∂µA

a
ν − ∂νAaµ − fabcAaµAbν .

Here Aaµ is the Yang-Mills gauge field which by definition transforms under SU(N) transformations
as

Aµ −→ Aµ′ = UAµU
† − iU∂µU †,

where U = eiθ
aTa ∈ SU(N) with θa ∈ R. The Lagrangian density for a pure SU(N) Yang-Mills

theory is defined as

L ≡ − 1

2g2
Tr(FµνF

µν) = − 1

4g2
F a
µνF

a,µν ,

where g is the gauge coupling constant. The action therefore takes the form

S =

∫
d4xL = −

∫
d4x

1

4g2
F a
µνF

a,µν .

6.2 Euclidean Formulation of Field Theory

Quantum field theory can be reformulated in terms of a Euclidean metric δµν instead of the
Minkowski metric ηµν . The transformation which brings η to the form of δ is called Wick rotation.
In terms of coordinates this transformation can be written as6

xµ = (x0,x) −→ xµ
′
= (ix0,x),

and thus the norm transforms as

xµx
µ = (x0)2 − x2 = (−ix0′)2 − x′

2
= −((x0′)2 + x2).

Consequently, after Wick rotation the pure Yang-Mills action becomes S → −iSE, where7

SE =

∫
d4xLE =

∫
d4x

1

4g2
F a
µνF

a,µν .

In Euclidean coordinates we also have the simplification that since the metric is δµν , upper and
lower spacetime indices are no longer distinct, i.e. xµ′ = xµ

′
. Wick rotation turns out to be very

useful in non-perturbative field theory, not only because of the simplified metric but because many
quantities in the path integral formalism are mathematically ill-defined using the Minkowski metric.

6We will usually use Greek indices for both Minkowskian and Euclidean coordinates, though for Euclidean coordinates
we write µ = 1, 2, 3, 4. It will always be clear from the context which indices we are using.

7The integration is over Euclidean variables as well.
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7 Instantons and Θ-Vacua in Yang-Mills Theories

In this section we are solely using Wick rotated coordinates, that is throughout this whole section
µ = 1, 2, 3, 4 and xµ = δµνx

ν . Consider a pure SU(N) Yang-Mills theory, with Lagrangian

L = − 1

4g2
F a

µν F
a,µν , (7.1)

where a is the group index for the fundamental representation, g is the coupling constant and Fµν
is the Yang-Mills field strength tensor (6.1). Notice the factor of 1/g2 in the Lagrangian, which is
due to the fact that we are now using a different definition for the field strength tensor

F a
µν ≡ ∂µA

a
ν − ∂νAaµ − fabcAbµAcν .

i.e. we have absorbed the dimensionless constant g into Aµ. This redefinition also removes the
factor of g from the covariant derivative, which now takes the form

Dµ = ∂µ + iAµ.

The Lagrangian (7.1), leads to the equations of motion

DµFµν = 0.

The euclidean action corresponding to the Lagrangian (7.1) is given by

SE =

∫
d4xLE =

1

4g

∫
d4x

(
F a
µν

)2
. (7.2)

Our goal is to find non-perturbative solutions to this equation called instantons. We consider the
specific case of an SU(2) Yang-Mills theory, but whenever possible we state the general SU(N)
result.

Definition. An instanton is a non-perturbative solution to the euclidean equation of motion such
that it has a finite non-zero action.

In our SU(N) Yang-Mills theory this translates to the condition that

lim
|x|→∞

Aµ(x) ≡ A∞µ = 0. (7.3)

We can express this in a more general form as under gauge transformations

Aµ → UAµU
−1 + iU∂µU

−1,

where U ≡ U(x) = exp{iθa(x)T a} ∈ SU(N). Thus, since Aµ vanishes at infinity, we can rewrite
A∞µ up to a gauge transformation as

A∞µ = iU−1∂µU = iU †∂µU = −iU∂µU †, (7.4)

where we have used that U †U = 1. This precisely means that Aµ approaches a pure gauge at
infinity. We can thus define an effective vacuum manifold Veff ≡ {A∞}, i.e the set of ‘values’ of Aµ
at infinity, which is isomorphic to SU(2), i.e. Veff ' SU(2). This means that instanton solutions
are characterised by the map

A∞µ : S3
∞ → SU(2),

or more precisely the third homotopy group π3(SU(2)), which is given by

π3(SU(2)) = Z.

Hence each instanton solution can be identified with a winding number or topological charge Q.
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Proposition. The topological winding number Q of a field configuration Aµ is given by

Q =
1

24π2

∮
S3

dΩµεµνρσTr{(U−1∂νU)(U−1∂ρU)(U−1∂σU)}

=− 1

16π2

∫
R4

d4xTr(Fµν ? Fµν) (7.5)

where the ?Fµν denotes the Hodge dual of Fµν, i.e

?F a
µν =

1

2
εµνρσF

a,ρσ,

where εµνρσ is again the totally anti-symmetric Levi-Civita tensor [8].

Proof. To prove this proposition we start with expanding the trace in expression (7.5)

Tr{Fµν ? Fµν} =2Tr{εµνρσ(∂µAν∂ρAσ + 2∂µAνAρAσ + AµAνAρAσ)}

=2∂µTr

{
εµνρσ

(
Aν∂ρAσ +

2

3
AνAρAσ

)}
,

where for the second equality we have used the cyclic property of the trace. We can now use Stoke’s
theorem on the integral (7.5) as we are integrating a total derivative. This reduces the integral over
all 4-dimensional euclidean space to an integral over the boundary, i.e the 3-sphere at infinity S3

∞,

Q =
1

12π2

∮
S3

dΩµTr

{
εµνρσ

(
Aν∂ρAσ +

2

3
AνAρAσ

)}
, (7.6)

where dΩµ is the area element on the 3-sphere.Using the properties of the fields this expression for
the topological charge can also be written as

Q =
1

24π2

∮
S3

dΩµεµνρσTr{(U−1∂νU)(U−1∂ρU)(U−1∂σU)}.

This shows, that to every point xµ at infinity, there corresponds a group element U ∈ SU(N), and so
this integral represents how many times the 3-sphere S3 is ‘wrapped around’ the group SU(N)8 [8].
Now, recall the topological result that S2n−1 = SU(N)/SU(N − 1) and so consequently for N = 2,
π3(SU(2)) = π3(S3) = Z [9].

It is important to note that during this proof we have found a conserved current

Kµ = 2

{
εµνρσ

(
Aν∂ρAσ +

2

3
AνAµAσ

)}
.

What is interesting about this current is that it does not come from Noether’s theorem, but rather
comes from purely topological considerations. Such currents are called Chern-Simmons currents,
which play an important role in the mathematical description of non-perturbative phenomena.

We have seen that instanton solutions are characterised by their winding number Q, such that each
instanton with a certain winding number cannot be continuously deformed into one with a different

8Note that this is in no way a complete proof so the � at the end is not justified. Essentially we only gave motivation
for the definition of the winding number.
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winding number. This follows from the gauge invariance of (7.5). Now one may naturally ask what
the difference in the action is between instantons with different Q. To answer this consider the action
(7.2) for our theory. We can rewrite this by noticing that Tr(FF ) = Tr(F ∓ ?F )2/2 ∓ Tr(F ? F )
and so

SE =
1

4g2

∫
d4xF a

µνF
a
µν =

1

2g2

∫
d4x

(
1

2
Tr(F ∓ ?F )2 ± Tr(F ? F )

)
(7.7)

≥± 1

2g2

∫
d4xTr(F ? F ) =

8π2

g2
× (∓Q). (7.8)

Here to go from (7.7) to (7.8) we have used the fact that Tr(T aT b) = δab/2, and so Tr(F ∓?F )2 ≥ 0.
The inequality (7.8) is saturated if F is (anti)-self dual, i.e F = ±?F , where the (+)-sign corresponds
to a self dual and the (−)-sign corresponds to an anti-selfdual fields. The corresponding instanton
solutions are also called instantons and anti-instantons respectively, where instantons have Q > 0,
while anti-instantons have Q < 0. Thus we have found that the action of instanton solutions is
given by

SE =
8π2

g2
|Q|, (7.9)

and so it only depends on the absolute value of the winding number.

7.1 Self Duality and The BPST Instanton

We now proceed to find explicit instanton solutions for our Lagrangian (7.1), where we will now
choose a specific gauge group SU(2). We largely follow the structure presented in the review [10],
but other sources include [11], [8] and [12]. As seen, this requires us to solve the (anti)-selfduality
equation

F a
µν = ± ? F a

µν = ±1

2
εµνρσF

a
ρσ. (7.10)

This is alone sufficient, since Fµν by construction satisfies the Bianchi identity Dµ ? Fµν = 0, and
so if Fµν is (anti)-selfdual, then it automatically satisfies the field equations DµFµν = 0.

Solutions to this equation can be found using a suitable ansatz. We try to find the solution with
Q = 1 called the BPST instanton. To do this we notice that any U ∈ SU(2) can be written as
U = A12 + iBiσi, with A2 + B2 = 1 to ensure unit determinant. Since A and Bi are otherwise
arbitrary, we can make them variables and write a general U(x) as

U(x) =
ixiσi + x4

12

r
,

where r = |x|. The winding number of this U(x) can be explicitly found using (7.5), which gives
that Q = 1. Using this form of U , which we rename U1 for obvious reasons, we can now substitute
into (7.4) which gives that

A∞4 = −x
iσi

r2
; A∞i =

1

r2
(x4σi + εijkxjσk),

where i = 1, 2, 3. We can simplify this expression by introducing the t’ Hooft symbol ηaµν defined as

ηaij = εaij ; ηai4 = δai,
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r

f(r)

1

Figure 2: The radial profile of the BPST instanton solution (7.17) for f(r) as a function of the four-radius
r =
√
xµxµ. The tree plots are for parameter values ρ = 0.5, 1, 2 top to bottom respectively.

where i, j = 1, 2, 3. This symbol has some nice properties, some of which we now state without
proof

?ηaµν =
1

2
εµνρση

a
ρσ = ηaµν ; (7.11)

εabcη
b
µρη

c
νσ = δµνη

a
ρσ − δµσηaρν − δρνηaµσ + δρση

a
µν ; (7.12)

εµνρση
a
σλ = δνλη

a
µρ − δµληaνρ − δρληaµν . (7.13)

Now, in terms of these symbols, the expression for A∞ takes a much nicer form

A∞µ = ηaµν
xν

r2
. (7.14)

The asymptotic form (7.14) of Aµ suggests an ansatz

Aaµ(x) = 2ηaµν
xν

r2
f(r2), (7.15)

where f(r2) is an arbitrary scalar function. The original boundary condition (7.3) implies the
following boundary conditions on f(r2):

(i) limr→∞ f(r2) = 1;

(ii) limr→0 f(r2) ∝ rn≥2;

where the second condition guarantees a non-singular solution. Substituting or ansatz (7.15) into
the selfduality equation (7.10) gives

∂µA
a
ν − ∂νAaµ − fabcabµAcν =

1

2
εµνρσ

(
∂µA

a
ν − ∂νAaµ − fabcabµAcν

)
.

By direct calculation, using the relation (7.12), we get that the field strength is given by

F a
µν = 4

[
ηaµν

f(f − 1)

r2
+
ηaνρxµx

ρ − ηaµρxνxρ

r4

(
f(f − 1) + r2f ′

)]
,
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r

|A|

Figure 3: The radial profile of the BPST instanton solution (7.18) for |A| as a function of the four-radius
r =
√
xµxµ. The tree plots are for values ρ = 0.5, 1, 2 top to bottom respectively.

where f ′ denotes a differential with respect to r2. To calculate the dual field strength, we have to
use the relations (7.11) and (7.13) giving

?F a
µν =

1

2
εµνρσF

a
ρσ = 4

[
−ηaµνf ′ −

ηaνρxµx
ρ − ηaµρxνxρ

r4

(
f(f − 1) + r2f ′

)]
.

Thus comparing these two expressions for the field and its dual, we arrive at a first order
differential equation for f(r2) given by

r2 df

dr2
= f(f − 1), (7.16)

with boundary conditions (i) and (ii) given above. The non-trivial, i.e. f 6= 0, solutions to this
equation are the functions

f(r2) =
r2

r2 + ρ2
, (7.17)

where ρ is an arbitrary constant. The corresponding solution for the field Aµ can now be deduced
from (7.15) giving

Aaµ = 2ηaµν
xν − xν0

(x− x0)2 + ρ2
, (7.18)

where we used translational invariance to make the solution more general. Hence we have suc-
cessfully found a Q = 1 instanton solution to our pure SU(2) Yang-Mills theory called the BPST
instanton9. The solutions (7.17) and (7.18) for f(r2) and |A| are shown in Figure 2 and 3.
We can also construct the BPST or one-instanton field strength

F a
µν = −4ηaµν

ρ2

((x− x0)2 + ρ2)2 , (7.19)

9BPST stands for the physicists Alexander Belavin, Alexander Polyakov, Albert Schwarz and Yu. S. Tyupkin who
first derived this solution in 1975 in reference [1].

23



Figure 4: The E3
i [left] and B3

i [right] fields (7.21) plotted as a function of the spatial coordinates xi for
parameter value ρ = 1. As the Hamiltonian is H ∝ E2 +B2, this shows that the energy density is localised
in space.

which is manifestly selfdual due to the properties of the η’s. The anti-instanton solution with
Q = −1 can also be explicitly found by solving the anti-selfduality equation. An identical calculation
will then give that the one anti-instanton solution is

Aaµ = 2η̄aµν
xν

r2 + ρ2
,

where η̄aµν are the anti-selfdual t’ Hooft symbols defined as

η̄aij = εaij ; η̄ai4 = −δai,

for i, j = 1, 2, 3. Both of these solutions have finite action

SE1 =
8π2

g2
,

given by (7.9). We can also find the Hamiltonian of this system, which is given by10

H =
1

2
(∂0A

a
i )

2 +
1

4
F a
ijF

a,ij =
1

2
(Ea

i )2 +
1

2
(Ba

i )2, (7.20)

where we have defined the analogues of the electric and magnetic fields Ea
i and Ba

i as

Ea
i ≡ ∂0A

a
i ; Ba

i ≡ −
1

2
εiρσF

a
ρσ. (7.21)

These vector fields are shown in Figure 4 for some specific values of the group index. Thus we see
that the energy density is localised and well defined as expected.

10It is important to note, that in order to get this expression we have fixed the gauge A4 = 0.
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x4

√
x1x2

x3

Γ3

Γ1

Γ2

Figure 5: The three dimensional cylinder C3 embedded into 4D ambient space with axis along the x4

coordinate. Two of the axes have been collapsed into one for visualization. The surfaces of integration are
labelled Γi.

7.2 Θ-Vacua and CP Violation

We now proceed with showing how instantons are related to the vacua of Yang-Mills theories, which
will also give us a more intuitive picture of what instantons actually represent. Consider the integral
(7.6) for the instanton winding number. As we have seen the application of Stoke’s theorem gave an
integral over the 3-sphere at spatial infinity. Since the topological winding number Q is homotopy
and gauge invariant, we have some freedom to manipulate this integral. Consider continuously
deforming the sphere S3 into the cylinder C3 such that the axis of the cylinder lies on the x4, i.e.
euclidean time, axis. The continuity of this transformation ensures that Q wont change due to its
homotopy invariance. Also, due to gauge invariance we can choose a gauge in which11 A4 = 0. So
the integral (7.6) splits into two parts

Q =
1

24π2

∮
S3

dΩµKµ =
1

24π2

[∫
Γ1

dΩµKµ +

∫
Γ2

dΩµKµ +

∫
Γ3

dΩµKµ

]
,

where the surfaces Γi are shown in Figure 5 [4].
Our gauge choice ensures that the integral over Γ2 vanishes and so

Q =
1

24π2

[∫
Γ1

dΩµKµ −
∫

Γ3

dΩµKµ

]
= Q1 −Q2,

where the minus sign comes from the outward norm convention for the surface element dΩµ. Thus
we have found that an (anti)-instanton solutions interpolate between different degenerate vacua in
time x4 = t → −∞ to x4 = t → ∞. For example, the BPST instanton has Q = 1 and so it
interpolates between neighboring vacua.

This also shows that Yang-Mills theories have an infinite set of degenerate vacuum states |Q〉
labelled by their topological winding. A system then can tunnel between these vacuum states via
instantons. It is important to note that by the state |Qn〉 we mean the field configuration

A(n)
µ = iU−1

n ∂µUn. (7.22)

11We can always find such a gauge transformation as we can just write Aµ′ → UAµU
−1 + iU∂µU

−1 and solve for U .

25



This raises the question which vacuum to pick for perturbative or non-perturbative calculations as
we have seen that each vacuum solution has a distinct topological charge and so different action
via (7.2). This also implies that these vacua |Q〉 are not gauge invariant. We therefore look for a
gauge invariant vacuum state that can be used as a true vacuum state for Yang-Mills theories.

Proposition. The Θ-vacuum state defined by

|Θ〉 =
∑
n

einθ |Qn〉 , (7.23)

θ ∈ R, is gauge invariant.

Proof. Consider the functional integral for the transition between states |Θ〉 → |Θ′〉

〈Θ′|e−iĤt|Θ〉 =
∑
n,n′

ei(n−n
′)θein

′(θ−θ′) 〈Qn′ |e−iĤt|Qn〉 ,

where we have used definition (7.23). As we know that tunnelling between the two vacua |Qn〉 and
|Qn′〉 happens via instantons with charge Q = Qn −Qn′ we can rewrite this as

〈Θ′|e−iĤt|Θ〉 =2πδ(θ − θ′)
∑
Q

e−iQθ 〈Qn +Q|e−iĤt|Qn〉

≈
∑
Q

e−iQθ
∫
D[AQ] exp

{
i

∫
d4xL

}
=

∫
D[Aµ] exp

{
i

∫
d4x

(
L+

θ

16π2
Tr(Fµν ? Fµν)

)}
,

where we have used the definition of the delta function and (7.5) [7]. This expression is manifestly
gauge invariant and so we have found the unique vacuum of our pure Yang-Mills theory.

Due to this gauge invariant vacua of the theory, the above proof motivates us to add a so called
Θ-term to the SU(N) Yang-Mills Lagrangian

Lθ ≡ −
θ

24π2
∂µKµ,

where θ is a gauge invariant real parameter. Even more interestingly this θ-term, allowed by gauge
invariance, violates the CP symmetry of SU(3) quantum chromodynamics. This apparent breaking
of the CP symmetry by the θ-vacuum term is called the strong CP problem.

8 Chiral Anomalies in Yang-Mills Theories

In this section we study the general behaviour or Yang-Mills theories under quantization. We will
see that some symmetries of the classical theory might be lost during the quantization process,
which problematically implies inconsistencies in some theories.

Definition. Consider a gauge field theory with action S which is invariant under some symmetry
group G. We say that the symmetry G is anomalous if this G-symmetry is not present in the fully
quantized theory.
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The form of the anomaly depends on the group G, which may be continuous, discrete, global or
local. If G is also the gauge group of the theory, then the the anomaly is called gauge anomaly.

Noether’s theorem states that each continuous global symmetry of a theory results in a conserved
current jaµ. On the other hand, if this symmetry is anomalous, then the resulting current will have
a non-zero divergence, i.e.

∂µjaµ = Aa,

where we call the object Aa the anomaly. Our goal is to study systems with such anomalies, and
derive the divergence of the Noether current.

8.1 QED Symmetries and Pion Decay

Here, we focus on one particular class of anomalies called chiral anomalies. Such anomalies can be
found in theories with fermions coupled to other fields. Chiral anomalies were first calculated by
Steinberger in 1949 [13], though not in the same context. Consider the fermionic term of the QED
Lagrangian

L = ψ̄(i /D −m)ψ = ψ̄(i/∂ − /A−m)ψ, (8.1)

where ψ is a 4-component Dirac spinor field and the Oµγ
µ = /O for any field Oµ. In (8.1) the photons

are coupled to the U(1) symmetry of the Dirac Lagrangian, and so it is natural to ask what other
symmetries this theory has

(i) Vector symmetry : This is the above mentioned global U(1) symmetry meaning that the La-
grangian (8.1) is invariant under transformations ψ → e−iαψ resulting in a Noether current

jµV = ψ̄γµψ.

(ii) Axial symmetry : The Lagrangian (8.1) is also invariant under the transformation ψ → eiαγ
5
ψ,

sometimes referred to as chiral symmetry. This results in the Noether current

jµA = ψ̄γµγ5ψ,

called the axial or chiral current. It is important to note that the divergence of the current is

∂µJ
µ
A = 2imψ̄γ5ψ, (8.2)

and so chiral symmetry only hold in the massless limit.

The first observation of an anomaly came through the process of a neutral pion decaying into two
photons. The pion does not couple directly to electromagnetism, but such decay processes can be
induced at the one loop level using a virtual fermion loop as shown in Figure 6. Steinberger, in
1949 [13], calculated the rate of such process using a proton loop to be ∼ 1016s−1, which proved
satisfactory at the time. Problems arose nearly twenty years later, when other methods became
available for calculating such decay rates. These new methods gave the result, e.g the Sutherland-
Veltman theorem [14, 15], that the decay rate should vanish in the massless limit. One reason for
this disagreement is that the Sutherland-Veltman theorem largely relies on the conserved Noether
current (8.2), but as we will now show this current gains corrections due to non-perturbative effects.
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Figure 6: Feynman diagram for a pion decaying to two photons at one loop. The diagram should vanish
when the mass of the fermion tends to zero.

8.2 Abelian Chiral Anomaly

Let Greek indices be Euclidean again, i.e µ = 1, 2, 3, 4. Consider a theory in which massless fermions
are coupled to photons in 3 + 1-dimensions, with action

S = −
∫
d4x

(
1

4g2
FµνF

µν + iψ̄ /Dψ

)
, (8.3)

where Dµ = ∂µ + iAµ. The sourceless partition function is then given by

Z =

∫
D[A]D[ψ]D[ψ̄]eiS[A,ψ,ψ̄]. (8.4)

Our goal now is to find the divergence in the axial current for this theory and thus calculate the
chiral anomaly. We will do this via the Fujikawa method by which one can calculate the chiral
anomaly using the measure of the partition function [16]. The method relies on the realization that
the invariance of the action is not sufficient to carry a symmetry into the quantum theory. This is
because we can see from (8.4) that the integral measure must also be invariant. Thus finding the
chiral anomaly requires that we examine how the path integral measure transforms under chiral
transformations, which in turn requires a more careful definition of the measure. Consider the Dirac
operator /D = Dµγ

µ, with eigenfunction expansion

/Dφn = λnφn ; φ̄n /D = λnφ̄n. (8.5)

We can then expand the spinor field in terms of these eigenfunctions as

ψ(x) =
∑
n

θnφn(x) ; ψ̄(x) =
∑
n

θ̄nφ̄n(x), (8.6)

where θi and θ̄i are Grassman variables so that the fields anti-commute. Using these expansions we
can now precisely define the path integral measure for fermions as

D[ψ]D[ψ̄] =
∏
n

dθndθ̄n, (8.7)

where the dθi are Grassman 1-forms described in Section 5.1. Consider a change of variables12

ψ(x)→ ψ′(x) = ψ(x) + ε(x);

12In functional integration, a change of variables actually means a change of function on which the integral depends,
in this case ψ.
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ψ̄(x)→ ψ̄′(x) = ψ̄(x) + ε̄(x), (8.8)

where ε(x) = iα(x)γ5ψ(x) and ε̄(x) = ψ̄iα(x)γ5. This corresponds to an infinitesimal space-
dependent chiral transformation with local parameter α(x). We can thus express this change of
variables more compactly as

ψ′(x) = (1 + iαγ5)ψ(x),

which after substitution of the eigenfunction equation (8.6) becomes∑
m

θ′mφm(x) = (1 + iαγ5)
∑
p

θpφp(x).

Due to the orthonormality of the eigenfunctions, we may multiply this equation by φn(x) and
integrate over all space giving

θ′n =
∑
m

δnmθ
′
m =

∑
m

θ′m

∫
d4xφm(x)φ†n(x) (8.9)

=

∫
d4xφ†n(x)

∑
p

(1 + iαγ5)φp(x)θp (8.10)

=
∑
p

(δnp + Cnp)θp, (8.11)

where we have defined the C-matrix as

Cnp = i

∫
d4xφ†n(x)α(x)γ5φp(x).

Hence due to the property of Jacobians of odd variables (5.2) we have found that the measure under
the change of variables (8.8) transforms as

D[ψ′]D[ψ̄′] =
1

[det(1 + C)]2
D[ψ]D[ψ̄],

i.e. with the square inverse of the Jacobian. Thus we have reduced the problem to calculating a
determinant. We can expand the determinant using a corollary of the Jacobi formula,13 namely

det(1 + C) = eTr(ln(1+C)) = eTr(C)− 1
2
C2+O(α4).

To first order in the parameter α the determinant is then

[det(1 + C)]−2 = e−2i
∫
d4xα(x)

∑
n φ
†
n(x)γ5φn(x). (8.12)

The partition function after the chiral transformation (8.8) can now be written as

Z =

∫
D[ψ′]D[ψ̄′]eS[ψ,ψ̄]−2i

∫
d4xα(x)

∑
n φ
†
n(x)γ5φn(x),

from which we can extract the divergence in the chiral current by variation of the parameter α(x)

∂µj
µ
A = 2imψ̄γ5ψ + 2i

∑
n

φ†n(x)γ5φn(x). (8.13)

13The corollary states that det(etB) = eTr(tB), where B is a square matrix.
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Hence it remains to evaluate the sum14

A(x) =
∑
n

φ†n(x)γ5φn(x), (8.14)

which is divergent. This divergence is due to the trace over infinite modes of the Dirac operator,
and hence to get any physical quantities we need to regularize.

8.3 Gauge Invariant Regularization

To regulate the sum (8.14) we introduce a regulator of the form f(λ2
n/Λ

2), where λn are the eigen-
values of the Dirac operator in (8.5) and Λ is a UV cut-off. This method we follow originates from
Fujikawa [16], and was then further generalised by Umezawa [17]. Here f is an arbitrary smooth
function such that

f(∞) = f ′(∞) = f ′′(∞) = · · · = 0, f(0) = 1.

We can now write down the regulated sum as

A(x) = lim
Λ→∞

∑
n

φ†nγ
5f(λ2

n/Λ
2)φn

= lim
Λ→∞

∑
n

φ†nγ
5f( /D

2
/Λ2)φn

= lim
Λ→∞

∑
n

∫
d4kd4k′

(2π)4(2π)4
e−ik

′xφ̃†n(k′)γ5f( /D
2
/Λ2)eikxφ̃n(k)

= lim
Λ→∞

Tr

(∫
d4k

(2π)4
e−ikxγ5f( /D

2
/Λ2)eikx

)
,

where we have written the Dirac modes as a Fourier transform and used that
∑

n φ̃
†
n(k)φ̃n(k′) =

(2π)4δ4(k − k′). The square of the Dirac operator can be expanded to give the identity

/D
2

= D2 + SµνFµν ,

where Sµν is the spinor representation of the Lorentz algebra defined in (4.5). Thus A(x) now
becomes

A(x) = lim
Λ→∞

Tr

∫
d4k

(2π)4
e−ikxγ5f((D2 + SµνFµν)/Λ

2)eikx

= lim
Λ→∞

Tr

∫
d4k

(2π)4
γ5f

(
1

Λ2
(ikµ +Dµ)2 + SµνFµν

)
,

where we used the relation Dµ[g(x) exp(ikx)] = exp(ikx)(ikµ+Dµ)g(x). We can now Taylor expand
f around k2, which gives

A(x) = lim
Λ→∞

Tr

∫
d4k

(2π)2
γ5

(
f(k2/Λ2) +

B

Λ2
f ′(k2/Λ2) +

B2

2!Λ4
f ′′(k2/Λ2)

)
,

14The notation A(x) might be seen as confusing, but all sources use this notation, so we adopt it in this report.
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where B(x) = (kµ+Dµ)2+SµνFµν−k2
µ. Notice that due to the properties of traces of γ-matrices, the

first non vanishing term in the trace is of O(Λ−4), on the other hand this is the last non-vanishing
term in the limit Λ→∞. Hence the infinite sum reduces to just one term

A(x) = lim
Λ→∞

Tr

[
γ5

(
1

Λ2
SµνFµν

)2
]

1

8

∫
d4k

(2π)4
f ′′(k2/Λ2)

= lim
Λ→∞

Tr(F ? F )

∫
d4k

(2π)4
f ′′(k2)

=− 1

16π2
Tr(F ? F ),

where we have used some properties of the γ-matrices. This means that we have found the divergence
in the axial current in Monkowski space is

∂µj
µ
A = A = − 1

8π2
Tr(F ? F ) = − 1

16π2
F a,µν ? F a

µν , (8.15)

where the factor of i comes from expressing the result in Minkowski space. This is of course non-zero
even in the massless limit. We have thus shown that chiral anomalies are due to non-perturbative
instanton-like effects.

9 Conclusion

In this report we have discussed two main aspects of non-perturbative Yang-Mills theories, namely
instantons and chiral anomalies. We explicitly found the one-istanton solution to an SU(2) pure
Yang-Mills theory, and discussed the consequences they have for the vacuum structure of these
theories. Further analysis can be done in this area, by explicitly finding higher winding instanton
solutions and explore their behaviour. One can also look at multiple instantons in one system,
which will lead to the theory of instanton gases. We have also shown that chiral anomalies, at least
in the Abelian case, can be studied using path integral methods. Our derivation was based on the
invariance of the path integral formalism, which lead us to look more closely at the measure. This
method can also be expanded to non-Abelian Yang-Mills theories, where chiral anomalies turn out
to be a bigger problem. We were also forced to regulate the chiral anomaly, which was done using a
gauge invariant cut-off regulator. Other methods of renorming chiral theories can be explored, and
consequently one may also show that the ABJ anomaly is independent of the choice of regulator.
In conclusion, we have seen a far from complete introduction to non-perturbative QFT. These same
methods developed in this report can be used to study more complicated theories like the standard
model.
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