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Abstract
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Holographic Entanglement Entropy

by Viktor G. Matyas

In this dissertation we study various aspects of the holographic entanglement entropy pro-
posals. We give a compact introduction to AdS space and CFT, which we use to state
and explore the AdS/CFT conjecture. We focus on a bottom-up approach to the duality
and calculate some boundary observables. Also, introducing some concepts from quantum
information theory we combine them with the AdS/CFT correspondence and give a con-
cise description of the RT and HRT proposals. We verify the validity of these proposals
by holographically proving some entropy inequalities. At the end we provide a holographic
derivation of the RT conjecture and discuss some of the subtleties involved.
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1 Introduction
The AdS/CFT correspondence conjectured two decades ago by Maldecina in [1] revealed a
deep connection between two seemingly very different physical theories. It points to a duality
between string theory in Anti-de Sitter (AdS) space and Conformal Field Theory (CFT) a
dimension lower. Since the early days of the correspondence many more details have been
discovered which uncovered a large holographic landcape with dualies between various vari-
ations of the general theories of both sides. Most problems solved although related more
to the dynamical matching of degrees of freedom or to the calculation of quantities through
the correspondence. In fact, it turns out when the field theory side of the correspondence is
strongly coupled the gravity side largely simplifies.

In this dissertation we attempt to discuss more the fundamental aspects of the AdS/CFT
duality, that is the emergence of the AdS spacetime itself. It was originally uncovered in
[2, 3] that the AdS geometry on the gravity side is strongly connected to the entanglement
structure in the boundary CFT. This seems higly non-trivial as it connects pure geometric
objects on one side with the specific QFT states on the other. The argument was later
extended in [4] to include a lot wider range of QFT states. These proposals established a
new field of study within the holographic landscape called holographic entaglement entropy.
Rather tellingly called as such because it relates the entanglement entropy of field theory
states with the geometry of the dual AdS space.

Our aim is to explore some aspects of these proposals. The discussion will not be exhaus-
tive nor self-contained, we rather give an introduction to various aspects of the holographic
entanglement entropy conjecture. Apart from the original proposals [2, 3, 4], many great
reviews exist [5, 6, 7] which proved very useful in writing parts of this dissertation. Due to its
complexity we first have to discuss various aspects of holography and quantum information
theory before moving on to combine these two.

The outline of the dissertation goes as follows: In Section 2, we introduce the two sides of the
AdS/CFT correspondence separately. We first define AdS space and discuss its geometric
properties after which we move on to study conformal field theories. Section 3 is dedicated
to the AdS/CFT correspondence. First, motivating the duality we discribe its many forms
and comment on their validity. We then look at how to calculate boundary observables from
the bulk theory, for example CFT correlators. As an interlude, in Section 4 we give an
introduction to quantum information theory and define some of the main quantities involved
in the holographic entaglement entropy formula. We also set up a path integral framework
in which to calculate some of these quantities in general QFT’s. Finally, in Section 5 we
precisely state the holographic entanglement entropy proposals and explore many of its
properties. We then provide a holographic derivation of the conjecture which highlights
some of the subtleties involved.
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2 Background: AdS and CFT
The aim of this section is to provide the background needed to formulate the AdS/CFT
correspondence while fixing some of the notation and conventions used throughout this
dissertation.

2.1 Anti-de Sitter Space
Anti-de Sitter space is a member of a larger family of geometric objects called maximally
symmetric spacetimes. It therefore instructive to discuss what such spacetimes are as this
provides us with a nice view of the origins of AdS space. We consider vacuum solutions to
Einstein’s equations in d dimensions

Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.1)

where R and Rµν are the Ricci scalar and tensor respectively, gµν is the Riemann metric, Tµν
is the energy momentum tensor and Λ is the cosmological constant. That is, we are looking
for solutions with Tµν = 0. Einstein’s equation above may also be rederived from the action

S[gµν , φ] = SEH[gµν ] + SMatter[gµν , φ],

where SMatter[gµν , φ] is the action for the collection of matter fields φ and

SEH[gµν ] =
1

16πG

∫
ddx
√
−g (R− 2Λ)

is the Einstein-Hilbert action. Thus we see that vacuum solutions to Einstein’s equation are
precisely the solutions to the variational problem δSEH = 0.

Maximally symmetric spaces are ones which have the highest possible number of symmetries.
From the viewpoint of differential geometry, symmetries are formulated in term of Killing
vectors. One can show that a manifold of dimension d has at most d(d+ 1)/2 Killing vectors
and so maximally symmetric spaces are ones which saturate this bound. It can also be shown
that if a space is maximally symmetric it must have a Riemann tensor given by

Rµνρσ =
R

d(d− 1)
(gνσgµρ − gνρgµσ),

i.e. it has a constant curvature. For a Lorentzian g there are three distinct cases here
depending on the sign of the Ricci scalar. For R = 0 we have a flat space, which we will refer
to as Minkowski space. In the case of constant positive curvature R > 0 we say the space
is de-Sitter, while if R < 0 we call it anti de-Sitter. With each choice of sign there comes a
corresponding choice of sign for the cosmological constant enforced by Einstein’s equation.



2.1. Anti-de Sitter Space 11

Contracting (2.1) with gµν we find the relation

R =
2dΛ

d− 2
,

which implies that Λ = 0 for Minkowski, Λ > 0 for de Sitter and Λ < 0 for anti-de Sitter
space.

For future convenience from now on we will discuss AdSd+1, i.e. d+1 dimensional AdS space.
AdSd+1 spacetime can be embedded into d+ 2 dimensional Minkowski space via

η̄MNX
MXN = −(X0)2 +

d∑
i=1

(X i)2 − (Xd+1)2 = −L2 (2.2)

with an induced metric

ds2 = η̄MNdX
MdXN = −(dX0)2 +

d∑
i=1

(dX i)2 − (dXd+1)2,

where M,N ∈ {0, 1, · · · , d + 1} and η̄ = diag(−,+,+, · · · ,+,−). We will also refer to
the embedding radius L as the AdS radius. It is important to note at this point that the
the embedding (2.2) manifestly has an SO(d, 2) symmetry and thus the isometry group of
AdSd+1 is also SO(2, d). This provides a nice check since we know that the group SO(2, d)
is (d+ 2)(d+ 1)/2 dimensional1 and thus we again see that AdS space is indeed maximally
symmetric.

Solving the embedding (2.2) we can find multiple coordinate systems which cover either the
whole or only part of AdSd+1. Here, we give two examples of such coordinates in each case
defining the coordinates and giving the metric.

• Global Coordinates (ρ, τ,Ωd−1):
X0 = L cosh ρ cos τ Ωi ∈ R s.t.

∑
i Ω

2
i = 1

X i = LΩi sinh ρ ρ ∈ R+, i ∈ {1, 2, · · · , d}
Xd+1 = L cosh ρ sin τ τ ∈ [0, 2π)

(2.3)

ds2 = L2
(
− cosh2 ρdτ 2 + dρ2 + sinh2 ρdΩ2

d−1

)
(2.4)

• Poincaré Coordinates (z, xi, t):
X0 = 1

2z
(z2 + L2 + ~x2 − t2) z ∈ R+

Xj = Lxi

z
j ∈ {1, 2, · · · , d− 1}

Xd = 1
2z

(z2 − L2 + ~x2 − t2) ~x ∈ Rd−1

Xd+1 = Lt
z

t ∈ R

(2.5)

ds2 =
L2

z2
(dz2 + d~x2 − dt2) (2.6)

1The difference from the formula above is due to the fact that we are now working in d+ 1 dimensions.
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Figure 2.1: The two Poincaré patches divided by the hypersurface
X0 = Xd depicted in the embedded AdS space [Left]. The Poincaré patch
shown in global coordinates [Right].

The global coordinates unsurprisingly cover the whole of AdSd+1. On the other hand, two
Poincaré charts are needed to cover all of AdSd+1, namely z > 0 and z < 0. These two charts
divide the space by the X0 = Xd hypersurface as seen in Figure 2.1. Thus as defined above
for z > 0 the Poincaré coordinates cover only half of AdSd+1 called the Poincaré patch. This
patch is shown within the greater AdS space in Figure 2.1.

Let us now have a closer look at the above coordinates. Seemingly, there are two interesting
limits to examine in the Poincaré coordinates. The limit z → ±∞ is precisely the hyper-
surface dividing the two Poincaré patches and thus this is a coordinate singularity. On the
other hand, the limit z → 0 is a real pole of the metric which we call the AdS boundary,
or ∂AdSd+1. In global coordinates this boundary is located at ρ → ∞. From (2.6) we see
that the the metric in the Poincaré patch for fixed z is conormally Minkowski, this will be
important later on.

In either case, we can evaluate the Ricci scalar and hence the cosmological costant for this
AdS geometry, which we find to be

R = −d(d+ 1)

L2
and Λ = −d(d− 1)

2L2
.

It is also important to note that ∂AdSd+1 is timelike and thus it can be reached in finite
time. This means that to specify dynamics in AdS space one not only needs initial data on
a Cauchy slice but also boundary conditions at z → 0. This has consequences that will be
pivotal in latter sections.
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2.2 Conformal Field Theory
Conformal Field Theories (CFT’s) are field theories which are invariant under scaling and
local angle preserving transformations called conformal transformations. A conformal trans-
formation is a coordinate map xµ → x′µ such that2

η′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = Ω−2(x)ηµν , (2.7)

i.e. the metric remains invariant up to a Weyl transformation. These transformations form
a group, called the conformal group which turns out to be SO(2, d). Setting Ω = 1 gives
the Poincaré group and thus it is a subgroup of the larger conformal group. Considering
infinitesimal transformations xµ → x′µ = xµ + εξµ(x) +O(ε2) and Ω ≡ eεK(x) = 1 + εK(x) +
O(ε2), and imposing (2.7) gives the coformal Killing equation

2Kηµν = ∂µξν + ∂νξµ. (2.8)

It tuns out that this has very different solutions in d = 2 and d > 2 dimensions. We consider
the d > 2 case for which the most general solution is given by

ξµ(x) = aµ + ωµνx
ν + σxµ + bµx2 − 2bνx

νxµ (2.9)

K(x) =
1

d
∂µξ

µ, (2.10)

where ωµν = −ωνµ. The conformal Killing vectors ξ = ξµ∂µ give the generators for the
Lie algebra of the conformal group called the conformal algebra. Apart from the Poincaré
generators of the Poincaré algebra, there are two new generators of the conformal algebra
generating

• Dilations: D = xµ∂µ;

• Special Conformal Transformations: Kµ = x2∂µ − 2xµx
ν∂ν .

Under conformal transformations a primary scalar field theory operator O∆ transforms as

O∆(x)→ O ′∆(x′) = Ω−∆O∆(x) ≈ O∆(x) + δO∆(x),

where we refer to ∆ as the conformal dimension of O∆. From the above infinitesimal trans-
formations we can deduce that

δO∆(x) = −K(x)∆O∆(x)− ξµ∂µO∆(x),

where ξµ(x) and K(x) are given above in (2.9) and (2.10).

CFT’s represent a very special class of field theories as the above constraint on the metric
also largely restricts any correlation function in the theory. As an example, take two scalar
primary operators O1(x1), O2(x2) and consider their two point correlator 〈O1(x1) O2(x2)〉 ≡
f(x1, x2). As our theory is conformally invariant we know that the two point function is also
2ηµν is the flat Minkowski metric.
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invariant under the conformal group, i.e. it satisfies the conformal ward identity

δ 〈O1(x1) O2(x2)〉 = 〈δO1(x1) O2(x2)〉+ 〈O1(x1) δO2(x2)〉 = 0.

This allows us to restrict the form of f(x1, x2) as follows. Translation symmetry implies
that f(x1, x2) → f(x1 − x2) ≡ f(x12), while Lorentz symmetry adds an extra constraint
f(x12) → f(x2

12). Now, due to the extra dilation and special conformal transformation we
can also impose the conformal ward identities for these transfromations. Invariance under
dilations implies that

δDf(x2
12) = (xµ1∂1µ + xµ2∂2µ + ∆1 + ∆2)f(x2

12) = 0,

which restricts f(x2
12) to the form

f(x2
12) =

A

(x2
12)

∆1+∆2
2

.

The ward identity for the special conformal transformation, given by

δKµf(x2
12) = (x2

1∂
µ
1 − 2xµ1∆1 − 2xµ1x

ν
1∂1ν + x2

2∂
µ
2 − 2xµ2∆2 − 2xµ2x

ν
2∂2ν)f(x2

12) = 0,

further restricts the two point function, which must therefore be of the form

〈O1(x1) O2(x2)〉 =

{
A

(x2
12)∆ if ∆1 = ∆2 = ∆

0 if ∆1 6= ∆2.
(2.11)

Thus we can see that in a CFT the form of the scalar two point functions is fully fixed. This
restricted form of the two point CFT correlator will provide a useful check for the AdS/CFT
correspondence.
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3 The AdS/CFT Correspondence
The most general observation one can make about the AdS/CFT correspondence is that it
draws an equivalence between two very different theories. On one side of the correspondence
there is a special class of strongly coupled field theories, while on the other side there is
quanatum gravity in asymptotically AdS spacetimes. This is a higly non-trivial statement
on its own, however the field theory exists in one less dimension then the quantum gravity
theory, which further highlights the significance of the duality. The connection between the
two theories was first discovered in [1], where a lot more specific version of the duality was
considered, namely the duality between N = 4 Super Yang-Mills Theory in 4 dimensions
and string therory in AdS5 × S5. Since then, we know that considerably weaker statements
of the correspondence also exist which motivated the alternative name, Gauge/Gravity cor-
respondence. In this section we explore the landscape of this correspondence and use it to
calculate some observable field theory quantities from gravity theroies. There are plenty
of original papers, e.g. [1, 8], covering what we will discuss, but as we are taking a more
retrospective viewpoint, the most useful resources for compiling this section were the notes
[9, 10], which both follow a bottom-up approach like us, and the books [11, 12].

3.1 Motivating AdS/CFT
The original motivation for the duality came from the special behaviour of some gauge
thories in the large N limit.1 It was realised in [13] that some gauge theories largly simplify
in such a limit, which again seems hihly non-trivial since one would expect the degrees of
freedom to quickly diverge. It turns out that if we consider the specific large N limit of
SU(N) theories in which N → ∞, the Yang-Mills coupling g → 0 and g2N remains fixed,
non-planar diagrams are supressed which results in big simplifications. Not only do planar
diagrams dominate, but in the above limit, also called the ’t Hooft large N limit, the sub-
dominant digrams arrange according to topology, which hints a connection to perturbative
string theory.

There are also motivations from the gravity side of the correspondence. For example, the
structure of boundary obervables in AdS gravity theories resembles field theory correlaors.
Also, the Bekenstein–Hawking entropy, since it is proportional to the area of some horizon,
scales like a local field theory on this horizon.

3.2 The AdS/CFT Dictionary
In what follows we give an introductory tour of the AdS/CFT landscape. There is no deriva-
tion of the correspondence, rather the above motivations together with other considerations
from the string theory prespective point towards the equivalence of objects on either side
of the duality. There are, however, many calculational checks one can perform to verify
1Here N refers to the gauge group dimension, i.e. SU(N) for a Yang-Mills Theories.
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the validity of AdS/CFT. We now state two versions of the duality and comment on their
validity and use.

The AdS/CFT Correspondence: The most general framework of the correpondence goes
as follows. On the gravity side of the correspondence we have string theory on an asymp-
totically AdSd+1 spacetime with a dynamical metric, thus a theory of quantum gravity. On
the field theory side there is a field theory in d dimensions which approaches a CFTd in the
UV limit.

The AdS space is usually referred to as the bulk. This is a very general and not so useful
statement of the duality. There are a lot more precise statements one can make about more
specific theories on either side of the correspondance. The one first dicdovered, for exam-
ple, draws an equivalence between N = 4 Super Yang-Mills theory and string therory in
AdS5 × S5. In this case the limits of validity are well studied and uderstood.

The AdS5/CFT4 Correspondence: N = 4 SU(N) Super Yang-Mills theory in 4 di-
mensions is dynamically equivalent to type IIB superstring theory on AdS5 × S5. The free
paramaters of the two theories are related via

g2
YM = 2πgs and 2g2

YMN =
L4

ls
,

where gYM is the Yang-Mills coupling, gs is the string coupling, L is the AdS curvature and
ls is the string length. The dynamical equivalence means that these two theories contain
precisely the same information and therefore decribe the same physics.

Even though the above statement is very robust it is still hard to do specific calculations
due to the complicated theories on both sides. Thus weaker, but more useful versions of
the correspondance can be thought of by invoking varous limits of the involved parameters.
The most useful limit turns out to be one where we take the weak string coupling gs � 1
limit in which case the string theory reduces to ‘classical’ string theory meaning that tree
level diagrams dominate. The corresponding limit of the field theory is where gYM � 1
with g2

YMN fixed, i.e. the ’t Hooft large N limit. In this limit things largely simplify. We
have already seen that the field theory in this limit is dominated by planar diagrams and
we have also mentioned that the gravity side reduces to ’classical’ string theory. In this
limit there is only one free parameter on both sided of the duality. These are the t’Hooft
coupling λ = g2

YMN for the field theory and the ratio L4/ls for the string theory, which are re-
lated by 2λ = L4/ls. From here on, we will be implicitly working in this t’Hooft large N limit.

In any case, there are broad ranging equivalences we can draw between objects in AdS and
CFT without having to refer to the particular version of the correspondence. These identify
some features of the duality and provide a dictionary between the two theories, thus it is
most commonly referred to as the AdS/CFT dictionary. In what follows we list some of the
elements of this dictionary:
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AdSd+1 ←→ CFTd

Isometry group SO(d, 2) ←→ Symmetry group SO(d, 2)
- Translations in radial direction ←→ Dilatation -

Boundary conditions ←→ Sources in ZCFT

Bulk fields ←→ Sources of operators
- Dynamical metric hµν ←→ Stress-energy tensor Tµν -
- Scalar field φ ←→ Scalar operator O -
- Mass m ←→ Conformal dimension ∆ -

Black holes ←→ Finite temperature

When we say that boundary conditions in the bulk act as sources in the CFT partition
function, what we mean is the relation

ZString[φ0(xµ)] =
〈
e
∫
ddxφ0(xµ)O(xµ)

〉
CFT

, (3.1)

where φ0(xµ) represents boundary conditions for a corresponding bulk field φ(xµ, z) and O is
the CFT operator dual to φ. This equivalence of the partition functions forms a pivotal part
of the duality. Relation (3.1) also gives exact meaning to the latter parts of the dictionary.
For example, if φ is a scalar bulk field, then its boundary condition φ0(xµ) sources a scalar
CFT operator O precisely as written in (3.1). The above equivalence further simplifies in the
large t’Hooft coupling λ� 1 limit2, as in this limit the string partition function is dominated
by it’s saddle point of the classical action, i.e.

ZString[φ0(xµ)] ≈ e−SCl[φ0].

Now, some conceptual comments are due here. We will often refer to the CFT as living on
the boundary of AdS. This, though a useful picture, can sometimes be vague. We have seen
in Section 2.1 that the boundary of AdSd+1 has naturally the structure of Minkowski space,
the spacetime of our CFT. This together with the fact that the boundary conditions of bulk
fields source CFT operators give the special connection between bulk and boudary.

In general we differenciate between two conceptually different, but equivalently useful ways
of looking at AdS/CFT [14].

• Top-Down: In this approach we start with a well know duality, for example the
AdS5/CFT4 correspondence. We then have well defined theories on both sides with
specific parameters and known Lagrangians. We can then ask questions about the spe-
cific dynamis of the theories and use the correspondence to calculate new quantities or
explore new regimes within these theories.

• Bottom-Up: Somewhat opposite to the top-down approach, we are less interested in
the specific aspects of the theories on either side. Since we usually use this approach to
holographically calculate CFT observables, we only consider a minimal AdS model. By
minimal we mean that we only introduce objects into AdS space that are specifically

2Even though we are taking the λ � 1 limit, we are still considering λ to be fixed and thus we are still
working in the t’Hooft large N limit.



18 Chapter 3. The AdS/CFT Correspondence

needed for the calculation. For example, to calculate a general CFT correlator it is
enough to consider a scalar field in AdS.

Both approaches have their place in the Holographic landscape, we will however concentrate
on the Bottom-Up approach as this is better suited to discussing holographic entanglement
entropy.

3.3 Boundary Observables
We now move on to calculating field theory correlation functions in the bulk. This will further
clarify the subtelties involving the duality and give a check on its correctness. Consider a
massive scalar field φ(xµ, z) living in the bulk AdSd+1 spacetime. The bulk action is then
given by3

SAdS = −C
∫
ddx dz

√
−g
(
gmn∂mφ∂nφ+m2φ2

)
,

where m = 1, 2, · · · , d + 1, m is the mass of φ and C is a shorthand for the normalisation
which we will ususally drop. Recall that the AdS metric in Poincaré coordinates is given by

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν).

Thus the above action gives rise to the Klein-Gordon equation(
z2∂2

zφ− (d− 1)z ∂z + z2∂µ∂µ −m2L2
)
φ(x, z) = 0.

We want to find the behaviour of this solution near the AdS boundary z → 0. Considering
a plane wave ansatz in the x directions, i.e. φ(x, z) = exp(ipµxµ)φ(z), gives(

z2∂2
zφ− (d− 1)z ∂z − z2p2 −m2L2

)
φ(z) = 0,

where near the boundary the term with p2 is subleading and so can be ignored. Hence for
z → 0 we have two independent solutions given by

φ(x, z) = (φ+(x) +O(z2))z∆+ + (φ−(x) +O(z2))z∆− ,

where

∆± =
d

2
±
√
d2

4
+m2L2. (3.2)

These exponents also satisfy the relationship ∆+ +∆− = d. Since there are two solutions, we
have to pick one to serve as the boundary condition and hence as the source of the dual CFT
operator. The standard boundary condition is to fix φ−, which is the leading behaviour4 of
φ as z → 0. Then, conformal invariance of φ on the boundary requires that under dilations,
i.e. under xµ → λxµ and z → λz, we must have

φ− → λ−∆−φ−,

3Notice, that we are considering the probe limit in which the scalar field does not contribute to the energy-
momentum tensor.

4It is the leading behaviour because ∆+ ≥ ∆−.
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Figure 3.1: The conformal scaling dimension ∆+ of a CFT operator O as a
function of the mass of the corresponding AdS field.

that is φ− has conformal scaling dimension ∆−. For a CFT operator O∆+ of dimension ∆ its
source must have dimension d−∆ so that the term

∫
φ0O is conformally invariant. Thus we

conclude that φ− is the source for the field theory operator O of dimension ∆+ = d−∆−.

Now, consider again the relation (3.2) which determines the scaling dimension of O∆+ . We
can see that this only allows us to construct operators with dimensions greater than d, that
is it seems like this procedure only allows us to give a bulk description of irrelevant CFT
operators, or at best, marginal ones. What partly resolves this issue is that unlike in flat
spacetimes, in AdS the mass squared of the scalar field is allowed to take values down to

−d2

4L2
≤ m2,

called the Breitenlohner-Freedman (BF) bound, without introducing instabilities in the the-
ory [15]. This in turn allows for dual desciptions of CFT operators down to dimensions of
∆+ ≥ d/2. Thus we can distinguish between the following cases for the CFT operators:

• m2 < 0, ∆+ < d: Relevant oprator, φ→ 0 as z → 0;

• m2 = 0, ∆+ = d: Marginal operator, φ→ φ− as z → 0;

• m2 > 0, ∆+ > d: Irrelevant operator, φ→∞ as5 z → 0.

We still, however, have to face up to the fact that we did not yet reach the unitarity bound of
d/2−1. To describe all relevant operators down to this limit we must return to the choice of
the original boundary conditions. Recall, that we said that the standard boundary condition
is to fix φ− and leave φ+ free. Invoking alternate boundary conditions, in which we instead
5If φ− 6= 0.
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Figure 3.2: Examples of tree level Witten diagrams for the two point
[Left], three point [Centre] and four point [Right] CFT correlator. We see
that 3pt functions require an interaction in the bulk.

fix φ+, reverses the role of φ+ and φ−, and alows us to reach the unitarity bound. This
procedure of reversing the role of the two leading order boundary terms is called alternative
quantization. The above discussion on the dimension of CFT operators is summarised in
Figure 3.1.

3.3.1 Correlation Functions
Let us now turn our attention to the bulk calculation of CFT correlators. Consider the
central bulk-boundary relationship (3.1). We have already seen that in the large t’Hooft
coupling limit the string theory partition function can be approximated via

ZString[φ0(xµ)] ≈ e−SCl[φ0], (3.3)

which is a semiclassical saddle point approximation. On the other side, one can rewrite the
field theory partition function as the sum of connected diagrams, i.e.〈

e
∫
φ0 O
〉

CFT
= e−WCFT[φ0], (3.4)

where W [φ0] generates the connected correlators of the theory. Substituting back into the
main bulk-boundary formula (3.1) we get the simple relation

W [φ0] = SCl[φ0], (3.5)

where based on our discussion above we identitfy φ0 = φ−. That is we deduced that the
classical action of the solution φ(x, z) in the bulk is the generating function of connected
scalar CFT correlators. We can now calculate the scalar n-point function of a CFTd from
the bulk via functional derivatives, that is

〈O1(x1)O2(x2) · · ·On(xn)〉 =
δnW [φ−]

δφ−(x1) δφ−(x2) · · · δφ−(xn)

∣∣∣∣
φ−(xi)= 0

=
δn SCl[φ−]

δφ−(x1) δφ−(x2) · · · δφ−(xn)

∣∣∣∣
φ−(xi)= 0

.
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What this means is that calculating correlation functions in the bulk amounts to evaluating
tree level diagrams on the gravity side of the duality. These diagrams in AdS space are
often referred to as Witten diagrams, some are depicted in Figure 3.2. These diagrams
come with a set of standard Feynman rules which help evaluate them. Thus we must find
the approprite propagators for the problem. They are obtained as greens functions of the
differential operator (� −m2) as usual, but now with the difference that we have to worry
about boundary conditions due to the timelike AdS boundary. We can construct a bulk-to-
boundary propagator by solving the equation (� −m2)φ = 0, with the boundary condition
φ(z, x) = φ−(x)zd−∆ as z → 0, where we have redefined ∆+ ≡ ∆. This problems is of course
solved by an integral equation

φ(z, x, x′) =

∫
ddx′K(z, x, x′)φ−(x′),

where K(z, x, x′) is the sought after bulk-to-boundary propagator. One can think of it as
the response in the bulk to a change in the boundary conditions. Analogously to standard
field theory we may also define a bulk-to-bulk propagator G(x, z, x′, z′) as the solution to

(�−m2)G(x, z, x′, z′) =
1√
−g

δ(z − z′)δ(x− x′),

which is the standard Green’s function. We can then think of this as a measure of the re-
sponse in the bulk to a change in the bulk. We can then use these propagators to calcuate
the above witten diagrams and thus holographically calculate CFT correlators. Also, it is
important to mention that for one to talk about 3pt correlators, bulk interactions must be
included, which further complicate calculations.

The specific form of the propagators is of course highly theory dependent and in most cases
requires us to introduce some sort of consistent renormalisation of the divergences. Such
renormalisation scemes within a holographic context is referred to as holographic renormal-
isation and involves adding boundary terms to the action. These boundary terms will not
affect the equations of motion, but they allow us to compensate the infinities in an organised
fashion. For example the two point scalar CFT correlator can be holographically calculated,
as in [8, 12, 11], to give the same result as we got based on purely CFT symmetry arguments,
i.e. (2.11). This provides a robust check on the validity of the AdS/CFT conjecture.
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4 Quantum Entanglement
We now take a detour and discuss a very different aspect of quantum theory, namely quan-
tum information theory. The main beauty in the formulation of holographic entanglement
entropy is how it brings fundamental aspects of quantum theory, like entanglement, into the
AdS/CFT landscape. Thus to properly discuss such holographic properties we must first
study the entanglement structure of general quantum theories. In what follows we discuss
entanglement first in discrete and then in continuous quantum systems. We then define
entanglement entropy and state its properties. Once equipped with such quantities we go on
to give a path integral representation of the entanglement entropy in QFT. The early parts
of this section are loosely based on the classic quantum information book [16].

4.1 Entanglement in Discrete Quantum Systems
Consider a quantum system with a Hilbert space H = HA⊗HB, for example we can imagine
a system of two qubits. Then a pure state |ψ〉 ∈ HA ⊗HB can be written as

|ψ〉 =
∑
i,j

cij |ei〉A ⊗ |ej〉B , (4.1)

where |ei〉A and |ej〉B are some basis for HA and HB respectively. We say a state |ψ〉 is
separable if the coefficients cij in (4.1) factorise into the from cij = cAi c

B
j , thus for a separable

state we have that
|ψ〉 =

∑
i,j

cAi |ei〉A ⊗ c
B
j |ej〉B = |χ〉A ⊗ |χ〉B , (4.2)

i.e. it can be written az a tensor product of two states |χ〉A ∈ HA and |χ〉B ∈ HB. If a state
|ψ〉 does not admit such a separation we call it entangled.

As an example we may take the above mentioned system of two qubits in which case HA

and HB are spanned by orthonormal basis {|0〉A , |1〉A} and {|0〉B , |1〉B} respectively. Then
the state given by

|ψ〉 =
1√
2

(
|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B

)
does not factorise as (4.2) and so |ψ〉 is an entangled state.

This discussion for the case of two Hilbert spaces clearly generalises to any number of spaces
H = ⊗αHα, for example a lattice system or a spin chain. In this case a state |ψ〉 ∈ ⊗αHα

can be written as

|ψ〉 =
∑

i1,i2,··· ,in

ci1,i2,··· ,in |ei1〉α1
⊗ |ei2〉α2

⊗ · · · ⊗ |ein〉αn , (4.3)

where each |eij〉αj is a basis for Hαj . A state is similarly called separable if in (4.3) the
coefficients factorise as ci1,i2,··· ,in = cα1

i1
cα2
i2
· · · cαnin , else the state is referred to as entangled.
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Figure 4.1: The bipartitioning of quantum systems into two regions A &
Ac, namely a sipn chain [Top], lattice [Left] and continuum QFT [Right].

Our aim is to analyse and quantify the quantum entanglement between two subsystems of a
larger quantum system. For example consider a lattice system with a Hilbert space at each
lattice point and divide it into two separate spacial regions A and Ac such that their union
gives the whole lattice, i.e. H = ⊗αHα = HA ⊗HAc . Further examples of such bipartition-
ing of quantum systems is shown in Figure 4.1. We want to figure out how to quantify the
dependence of the degrees of freedom in region A on the ones in region Ac for a given state
|ψ〉 ∈ HA ⊗HAc .

So far we have considered quantum mechanics from the perspective of states in a Hilbert
space. There exists an equivalent formulation in terms of density matrices which will prove
the most powerful approach for this problem. The density matrix for a pure state |ψ〉 ∈
⊗αHα is simply defined as the operator

ρ = |ψ〉 〈ψ| . (4.4)

Since we are interested in the relation of two regions A and Ac, we also define the reduced
density matrix given by

ρA = TrAc(|ψ〉 〈ψ|), (4.5)

i.e. we remove the degrees of freedom in Ac by tracing over the Hilbert spaces HAc . Us-
ing the powerful theorem of Schmidt decomposition from linear algebra we can find further
properties of deduced density matrices.

The Schmidt Decomposition Theorem: Let |ψ〉 ∈ HA ⊗ HAc be a pure state in a
bipartitioned system as above. Then there exist orthonormal basis |ei〉A and |ei〉Ac for HA
and HAc respectively such that

|ψ〉 =
∑
i

λi |ei〉A ⊗ |ei〉Ac , (4.6)
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with
∑

i λ
2
i = 1 and λi ≥ 0.

This has clear implications for the reduced density matrix. If |Ψ〉 is a pure state as above
then by (4.6)

ρA = TrAc
(
|ψ〉 〈ψ|

)
=
∑
i

λ2
i TrAc

(
|ei〉A A〈ei| ⊗ |ei〉Ac Ac〈ei|

)
=
∑
i

λ2
i |ei〉A A〈ei| , (4.7)

and similarly ρAc =
∑

i λ
2
i |ei〉Ac Ac〈ei|. Thus we see that the the eigenvalues of ρA and ρAc

coincide as they are both λ2
i .

We are now equipped with the tools necessary to quantify the entanglement of a state is such
bipartitioned quantum systems. We define the entanglement entropy as the von Neumann
entropy of the reduced density matrix, i.e.

SA = −TrA
(
ρA log ρA

)
, (4.8)

which measures the entanglement between regions A and Ac for a state |ψ〉 ∈ HA ⊗ HAc .
For later convenience we also define the so called Rényi entropies

S
(q)
A =

1

1− q
logTrA

(
ρqA
)
, (4.9)

where q ∈ Z+. These are the moments of the reduced density matrix with an extra normal-
isation factor. One powerful property of the Rényi entropies is that

SA = lim
q→1

S
(q)
A , (4.10)

which proves to be a useful trick in computations of entanglement entropy. This relation
can be easily proved by writing1

lim
q→1

S
(q)
A = lim

q→1

1

1− q
logTrA

(
ρqA
)

= lim
q→1

1

1− q
logTrA

(
ρAρ

q−1
A
)

= lim
q→1

1

1− q
logTrA

(
ρAe

(q−1) log ρA
)

= lim
q→1

1

1− q
logTrA

(
ρA + (q − 1)ρA log ρA +O(q − 1)2

)
= lim

q→1

1

1− q
log
(
1 + (q − 1)TrA(ρA log ρA) +O(q − 1)2

)
=SA,

and so (4.10) indeed holds.

1 One might notice that the Rényi entropies in (4.9) are only defined for integer values of q, and so the limit
there makes little sense. This will later be defined more rigorously by analytic continuation of S(q)

A to non
integer values of q which we also assume to be doing here.
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Recall that we have shown in (4.7) that the density matrices ρA and ρAc have the same
eigenvalues. This implies that for a pure state the Rényi entropies S(q)

A and S(q)
Ac are equal,

i.e.

S
(q)
A =

1

1− q
logTrA

(
ρqA
)

=
1

1− q
log

(∑
i

λqi

)
= S

(q)
Ac , (4.11)

where λi are the eigenvalues of ρA and ρAc . It is also important to note that the Rényi
and von Neumann entropies are defined in terms of traces of the reduced density matrix
and hence remain unchanged under unitary transformations supported on either A or Ac.
Thus the only way to change the entanglement entropy of a state is to act with a unitary
transformation supported on A ∪Ac.

4.2 Properties of Entanglement Entropy
Let us now turn to explore some of the properties of quantum entanglement entropy which
will provide a useful check in the holographic setup that will follow. Recall that the entan-
glement entropy in a bipartite quantum system is given by

SA = −TrA(ρA log ρA).

There are several interesting properties which follow, but we will only state the ones most
relevant to our future analysis. Consider a quantum system partitioned into distinct re-
gions Ai, such that A = ∪iAi with the Hilbert space of the whole system takes the form
H = ⊗iHAi . Then the entanglement entropy between these regions satisfies the following
properties:

• Positivity: (SA ≥ 0);

• Subadditivity: (SA1 ∪A2 ≤ SA1 + SA2);

• Araki-Lieb Inequality: (SA1 ∪A2 ≥ |SA1 − SA2|);

• Strong Subadditivity: (SA1 ∪A2 ∪A3 + SA2 ≤ SA1 ∪A2 + SA2 ∪A3).

The proof of many of these properties is quite subtle and rely on many lemmas from func-
tional analysis, they can mostly be found in [16]. The reason why we mention this is because
it will turn out that the proof of these inequalities is substantially simpler in the holographic
context and thus we leave the proof to latter sections. It is however important to emphasise
that the above relations hold in any quantum system whether continuous or not and hence
provide a very robust check on the ‘quantumness’ of any theory.

4.3 Entanglement in QFT
We now proceed to formulate entanglement entropy as defined above for quantum field
theories. One might think of this as taking the limit ε → 0 in Figure 4.1. The states of
quantum mechanics |ψ〉 now become wavefunctionals Φ[φ(~x)], where φ(~x) is the set of fields
that characterise the system on a Cauchy slice Σ parametrised by spatial coordinates ~x.
Thus we can follow the construction of entanglement and Rényi entropies from the previous
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section. We will now have spatial regions A,Ac ⊂ Σ separated by an entangling surface
∂A, which is the boundary of region A as shown in Figure 4.1. In the continuum setup, the
trace over Hilbert spaces in Ac in (4.5) amounts to integrating over all field configurations
in that region. With a reduced density matrix constructed it should now be straightforward
to also define the entanglement entropy, but here we run into some complications. Since the
reduced density matrix is now a continuous operator, taking its logarithm is tricky. Luckily
we have already developed some machinery to deal with this, namely relation (4.10) which
states that

SA = lim
q→1

1

1− q
logTrA

(
ρqA
)
. (4.12)

This solves our problem as we are now taking the logarithm of a trace. In what now follows
we will make the above arguments more precise.

Our strategy is as follows: We first discuss the causal structure of entanglement entropy
and set up a path integral framework for the calculation of matrix elements of the reduced
density matrix. We then apply the above trick and calculate the entanglement entropy by
suitable analytic continuation of the Rényi entropies.

4.3.1 Entanglement Entropy and Causality
In order to deal with time dependent states, we have to consider the causal structure of
entanglement entropy in QFT. States are defined by field data on a Cauchy slice Σ and
so the spacetime is defined by B = D−[Σ] ∪ D+[Σ], where D−[Σ] and D+[Σ] are the past
and future domains of dependence of Σ respectively. Entanglement is formulated in terms
of spatial subregions A,Ac ⊂ Σ, where A ∪ Ac = Σ with boundary ∂A. The domain of
causal dependence of A is similarly given by the subregion D±[A] in which the reduced
density matrix can be uniquely evolved. It is important to realise that the domains D±[A]
and D±[Ac] do not make up the whole spacetime as illustrated in Figure 4.2. We have to
consider the regions of spacetime which can be causally influenced by the boundary ∂A,
denoted J±[∂A]. Thus the spacetime decomposes into causal parts

B = D±[A] ∪D±[Ac] ∪ J±[∂A].

Following our previous discussion, the eigenvalues of the density matrix can only be changed
via unitary transformations supported on D[A]∪D[Ac]. This implies that the entanglement
entropy is not sensitive to the particular choice of Cauchy slice Σ, i.e. we are allowed to
choose any other Cauchy slice Σ′ without affecting the entropy as long as D±[A] = D±[A′].
A lot longer discussion on this issue of causality can be found in [17].

4.3.2 Path Integral Formalism
In the path integral formalism of QFT, states are represented by functional integrals over
field configurations. We start by writing down a Euclidean path integral representation of
the vacuum state of our QFT. We denote by φ(~x, tE) the collection of fields defining our
theory, but for simplicity we will think of this as a single scalar field. Let |φ〉 be a basis
for the Hilbert space of states on a constant-time Cauchy slice ΣtE=0. We take it to be the
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Figure 4.2: The causal structure of the bipartitioning of a cauchy slice Σ
into two regions A and Ac such that A ∪Ac = Σ. The figure covers the
spacetime B and the time direction is perpendicular to Σ.

eigenbasis formed by the field operator φ̂(~x, tE) at tE = 0, that is

φ̂(~x, tE = 0) |φ〉 = φ(~x) |φ〉 .

We can then represent the vacuum wavefunctional Φ[φ(~x)] as the Euclidean path integral

Φ[φ(~x)] = 〈0|φ〉 =

∫ φ(~x,tE=0)=φ(~x)

φ(~x,tE=−∞)=0

[Dφ]e−SE [φ], (4.13)

where we are integrating over the Euclidean half plane tE ≤ 0. This allows us in turn to
write down a path integral representation for the matrix elements of the density matrix as

ρφφ′ ≡ 〈φ|ρ|φ′〉 = 〈φ|0〉 〈0|φ′〉 = Φ∗[φ]Φ[φ′], (4.14)

where we get Φ∗[φ] by integrating from tE =∞ to tE = 0.

It is important to note that what we have found here is the density matrix for the vacuum
state. For simplicity we will continue to explicitly work with this vacuum density matrix
even though this Euclidean formalism readily generalises to states with no non-trivial time
dependence. These states have a Euclidean path integral representation precisely like (4.13),
but now with some specific boundary condition on the lower limit, i.e.

〈φ′|φ〉 =

∫ φ(~x,tE=0)=φ(~x)

φ(~x,tE=t′)=φ′(~x)

[Dφ]e−SE [φ].

To get the reduced density matrix ρA we need to remove the degrees of freedom in Ac. This
can be done by glueing the two path integrals in (4.14) together at tE = 0 along Ac with a
cut along A as shown in Figure 4.3. Denoting the field values along A for the two limits as
φ(tE = 0+)|A = φ+ and φ(tE = 0−)|A = φ− the path integral for the reduced density matrix
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Figure 4.3: The path integral construction for the computation of the
matrix elements of the reduced density matrix. For time-idependent states:
Euclidean half spacetimes glued together along Ac with a slit cut through A
[Left]. For time-dependent states: Two copies of J−[Σ] glued together along
Ac with a slit cut through A [Right].

is given by

(ρA)φ+ φ− =

∫ tE=∞

tE=−∞
[Dφ]e−SE [φ]δE(φ±), (4.15)

where δE(φ±) = δ(φ(tE = 0+)|A − φ+)δ(φ(tE = 0−)|A − φ−) is a delta function that conve-
niently extracts the matrix elements.

As we have emphasized, the above Euclidean construction only works for time-independent
states, or more generally states with a time reflection symmetry. In these cases, integrating
over the whole of Euclidean spacetime is compatible with causality as there is no non-trivial
information about the state in the future domain of the Cauchy slice it is defined on. For
general time dependent states one cannot simply integrate over all time. This is due to the
fact that to define a density matrix ρ(t) at time t, we cannot use field data at a time t′ > t
without violating causality. Based on our previous discussion on causality in Section 4.3.1,
we know that instead on the half Euclidean plane what we have now instead is J−[Σt=0],
the causal past of the Cauchy slice our states are defined on. One can then find a path
integral representation for the reduced density matrix by first evolving forward in J−[Σt=0]
until Σ and then retracing the evolution backwards on another copy of J−[Σt=0]. The rest
of the construction follows on from the time independent case, but now with the geometry
consisting of two copies of J−[Σt=0] glued along Σ with a slit cut along A as shown in Figure
4.3. Denoting the forward and backwards evolving fields as φR and φL respectively2 we have
that

(ρA)φ+ φ− =

∫
J−[Σ]

[DφR] [DφL]eiS[φR]−iS[φL]δ(φ±), (4.16)

where now the delta function takes the form δ(φ±) = δ(φL(t = 0+)|A−φ+)δ(φR(t = 0−)|A−
φ−). The method to compute path integrals via such a setup is called the Schwinger-Keldysh
formalism.
2The fields φR and φL live on two distinct copies of J−[Σ] .
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Figure 4.4: The replica path integral construction used to compute the
powers of the reduced density matrix in the case of time-independent [Left]
and time-dependent [Right] states. The arrows denote identifications of the
boundary conditions. The solid arrows are the identifications used for the
powers while the dashed arrows are the identifications used for taking the
trace.

4.3.3 Replica Construction
Having found an expression for the reduced density matrix we are motivated by (4.12) to
calculate the powers of it. The method used to calculate these powers is called the replica
method as it essentially copies the above computation q times. To start with, consider
time-independent states and take q copies of the above path integral construction (4.15), i.e.

(ρA)φ1+ φ1−(ρA)φ2+ φ2− · · · (ρA)φq+ φq− .

Since we are performing matrix multiplication, we are required to integrate over intermediate
boundary conditions while identifying the kth (+) with the (k+ 1)st (−) boundary condition
as shown in Figure 4.4. This can be achieved by taking q copies of (4.15) as above and
inserting delta functions which generate the required identifications, i.e.

(ρqA)φ+ φ− =

∫ q−1∏
j=1

dφ
(j)
+ δ(φ

(j)
+ − φ

(j+1)
− )

∫ q∏
k=1

[Dφ(k)]e−
∑q
k=1 SE [φ(k)] δE(φ±). (4.17)

All that remains for the computation of the Rényi entropies is taking the trace of (4.17).
It should be clear from Figure 4.4 that this simply involves identifying the remaining two
boundaries, i.e. φ(1)

− and φ(q)
+ . Thus the trace of the qth power of the reduced density matrix
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for time-independent states is given by

TrA(ρqA) =

∫
dφ

(q)
+ δ(φ

(q)
+ − φ

(1)
− )

∫ q−1∏
j=1

dφ
(j)
+ δ(φ

(j)
+ − φ

(j+1)
− )

×
∫ q∏

k=1

[Dφ(k)]e−
∑q
k=1 SE [φ(k)] δE(φ±), (4.18)

where we have inserted an extra delta function to make the trace identification.

For states with general time-dependence this replica construction works very similarly as in
Figure 4.4. The only difference is that we now have to keep track of the time direction on
each copy of J−[Σt=0]. This means that we identify the kth (+,L) boundary with the (k+1)st

(-,R) boundary, where we have denoted the time direction by L and R as before. Taking the
trace again amounts to identifying the remaining two boundaries.

In either time dependent or independent case one can equivalently think of the above replica
construction in more geometric terms. From Figure 4.4 we see that the path integral is
nothing more then integrating over fields living on a new spacetime manifold Bq which is
constructed by taking q copies of B (or J−[Σt] for time dependent states) and making the
same identifications of the boundaries as before. We will refer to this new manifold Bq as
the q-fold branched cover of B. Thus we can equivalently think of (4.18) as a path integral
on Bq and write

Tr(ρqA) ≡ Z[Bq]
Z[B]q

=
1

Z[B]q

∫
Bq

[Dφ]e−SE [φ], (4.19)

where we have divided by a factor of Z[B]q to properly normalise the entropy.3 Consequently
the Rényi entropies can be calculated via

S
(q)
A =

1

1− q
log(Tr(ρqA)) =

1

1− q
log

(
Z[Bq]
Z[B]q

)
. (4.20)

Having found a path integral representation of the Rényi entropies it is now time to invoke
the limit (4.10) to calculate the entanglement entropy. This, however, requires an analytic
continuation of S(q)

A , defined for q ∈ Z, to real values of q, which in general is not guaranteed
to uniquely exist. We can evade the issue using Carlson’s theorem from complex analysis
which guarantees a unique analytic continuation given that S(q)

A behaves sub-exponentially
at q → ±i∞.

It is also important to note that by construction, the replica path integral (4.19) carries a Zq
symmetry due to the cyclicity of the trace. One can think of this symmetry as the reshuffling
of the replica copies of the spacetime B in (4.18).

3Notice that so far, for example in (4.15), we have ignored the normalisation of the path integrals. This
factor of 1/Z[B]q is precisely inherited from a normalisation of 1/Z[B] in (4.15).
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5 Holographic Entanglement Entropy
Now that we are equipped with all the necessary tools, we move on to give a holographic
description of entanglement entropy. Having discussed features of the AdS/CFT corre-
spondence and quantum information theory one might ask how quantum entanglement is
captured in a holographic setup. The problem was originally addressed Ryu and Takayanagi
(RT) [2, 3], who gave a holographic prescription for calculating the entanglement entropy of
time-independent states. This was then generalised by Hubney, Rangamani and Takayanagi
(HRT) [4] to include general time dependent states. In this section we present some of the
central aspects of the holographic entanglement entropy formula. We first state the RT and
HRT prescriptions and discuss their properties, which we then use to give a holographic proof
of strong subadditivity. Then, we attempt deriving the RT prescription from the AdS/CFT
correspondence and finally we consider some examples.

5.1 The Hubney-Rangamani-Takayanagi Prescription
The Hubney-Rangamani-Takayanagi Prescription: Consider a QFTd living on Bd,
which is the boundary geometry of some asymptotically AdSd+1 bulk spacetimeMd+1, and
let Σ ⊂ Bd be a Cauchy slice on this boundary geometry. Consider spatial subregions
A,Ac ⊂ Σ such that A ∪ Ac = Σ and denote the boundary of A as ∂A. We are then
required to find a bulk codimension-2 surface satisfying the following constraints:

• It must be an extremal surface anchored on ∂A. More precisely we need to find a surface
EA which extremises the bulk area functional with boundary condition EA

∣∣
B = ∂A;

• If there are multiple such surfaces we only need to consider extremal surfaces which can
be smoothly deformed to A. This means that there must exist a bulk codimension-1
smooth surface RA ⊂Md+1 interpolating between A and EA;

• If there are still more than one extremal surfaces EA left satisfying the above constraints
we should pick the one with the smallest area.

The entanglement entropy in QFTd is then given by the area of EA in Planck units, that is

SA =
Area(EA)

4G
(d+1)
N

, (5.1)

where G(d+1)
N is Newton’s constant in d+ 1 dimensions.

This is the covariant HRT proposal for time-dependent states put forward in [4]. If the state
in question in the QFTd is time-independent then it suffices to find a minimal surface instead
of an extremal one, this is the original RT proposal [2, 3].

In many cases it is more useful to formulate the extremal area condition in terms of more
geometric objects. We adopt local coordinates normal to the surface EA and denote by nN1
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Figure 5.1: Various examples of RT or HRT surfaces. The extremal surface
of two either connected or disconnected regions [Left]. The extremal surface
of a black hole setup, where we see that the bifurcation surface γB plays an
important role in the homology constraint. [Right]

and nN2 the two normal basis vectors1 with normalisation nN1 nM2 gNM = −1 and nNa n
M
a gNM =

0, the indices {a, b} run over the two normal directions. Using this basis, and the projector
γAB + n1

An
2
B + n2

An
1
B, we define the extrinsic curvature of EA as

Ka
NM = γPN γ

Q
M∇P naQ.

In terms of these quantities the condition of extremality can be rephrased as the vanishing
of the trace of the extrinsic curvature, i.e.

γNMKa
NM ≡ Ka = 0 ⇐⇒ EA extremal.

If we are talking about time-independent states, we will have a spacelike and a timelike
normal coordinate, say x and t respectively. In this case what we want is the minimal area
constraint of the RT proposal. In this formulation this reduces to the requirement that the
trace of the spacelike extrinsic curvature should vanish, i.e. Kx = 0 [5, 18].

5.2 Holographic Entropy Inequalities
The RT and HRT prescriptions for entanglement entropy look very different in appearance to
the quantum information definition via the von Neumann entropy. It is therefore beneficial
to check whether the properties of SA discussed in Section 4.2 are indeed satisfied in the
holographic setup. The holographic proof of these inequalities provides a further insight into
the workings of the RT proposal and nicely demonstrates the link between bulk geometry
and entanglement. We consider a time-independent state within the framework of the RT
proposal. It is also possible to prove these properties for general time-dependent states [19],
but this involves an alternate formulations of the HRT proposal and is significantly more
1There are two normal basis vectors since EA is a codimansion-2 surface.
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Figure 5.2: The surfaces used for the proof of strong subadditivity in the
holographic setup. In each case E is an extremal while γ is a general bulk
codimesion-2 surface.

involved, thus we will concentrate on the simpler but more insightful RT setup. Consider
the above holographic setup with a QFTd living on B which has a constant time Cauchy
slice Σ ⊂ B. But now, let Σ be partitioned into multiple non overlapping subsets2 Ai ⊂ Σ.
Then, the entanglement entropy properties can be holographically proved as follows. For
each property we give a holographic proof and also discuss the saturation of some inequalities
from the holographic viewpoint.

• Positivity (SA ≥ 0):
Proof. This follows directly form the RT formula in which SA is given as the area of
some spacelike surface which is positive by construction.
Saturation. SA = 0 if and only if either A = ∅ or A = Σ.

• Subbaditivity (SA1 ∪A2 ≤ SA1 + SA2):
Proof. Consider the minimal RT surfaces E1 and E2 for SA1 and SA2 respectively. From
Figure 5.1 we see that the surface γ12 = E1 ∪ E2 is a surface anchored on ∂(A1 ∪ A2)
and thus must have an area greater that or equal to the minimal RT surface E12 for
A1 ∪ A2. Thus we have that

Area(E1) + Area(E2) = Area(γ12) ≥ Area(E12)

and so this directly implies that

SA1 ∪A2 ≤ SA1 + SA2

via the RT formula.
Saturation. SA1 ∪A2 = SA1 + SA2 if and only if E12 = E1 ∪ E2. From Figure 5.1 we can
see that this happens if the two regions A1 and A2 are disconnected and are far apart
on the scale of their own size. In this case the minimal RT surface is the one that does
not join them which is precisely E1 ∪ E2.

• Strong Subadditivity (SA1 ∪A2 ∪A3 + SA2 ≤ SA1 ∪A2 + SA2 ∪A3):
Proof. We follow a similar cutting and glueing procedure. Take three regions A1,2,3 and
consider the minimal RT surfaces E12 and E23. From Figure 5.2 we see that there are

2We let the range of i be general here, which is fine for the holographic proofs.
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two ways to cut and glue the surfaces, one giving γ123 and γ2, while the other giving γ1

and γ3. Each γ is a surface anchored at the same boundary points as the corresponding
E , which is a minimal surface. This immediately implies the two inequalities

SA1 ∪A2 ∪A3 + SA2 ≤ SA1 ∪A2 + SA2 ∪A3

SA1 + SA3 ≤ SA1 ∪A2 + SA2 ∪A3 ,

the first of which is strong subadditivity.
Saturation: SA1 ∪A2 ∪A3 +SA2 = SA1 ∪A2 +SA2 ∪A3 if and only if γ2 = E2 and γ123 = E123.

The holographic proofs above all relied on very simple geometric relations like the area of a
surface. This demonstrates the main power of the RT formula which is that it reformulates
a highly quantum-like phenomenon in the boundary in terms of purely geometric objects in
the bulk.

5.3 Derivation of the RT Proposal
In what follows, we provide a derivation of the RT proposal. Heuristically, the proof is
structured as follows: We first use some basic entries from the AdS/CFT dictionary to find
an expression of the Renyi entropies in terms of bulk partition functions. We then use the
saddle point approximation in the bulk to evaluate the entropy as the on-shell value of a this
semiclassical action. We follow the notation of previous sections and consider a CFTd living
on a boundary geometry B, with a bipartite Cauchy slice A,Ac ⊂ Σ. Dual to this, there is a
bulk spacetimeM with conformal boundary ∂M = B. As we have seen in Section 4.3.3, to
calculate the entanglement entropy one has to evaluate the CFT partition function on the
branched replica geometry Bq.

The first step in the holographic derivation is the basic bulk to boundary relation in AdS/CFT
that relates the partition function of the boundary CFT to the partition function of the bulk
string theory, namely3

ZString[φ0] =
〈
e
∫
ddxφ0(xµ)O(xµ)

〉
CFT

. (5.2)

Since the replica method requires us to calculate the partition function on the branched cover
geometry Bq the bulk to boundary relation (5.2) shows that we need to find a bulk geometry
Mq such that ∂Mq = Bq. This means that we need to find Mq that solves Einstein’s
equation such that ∂Mq = Bq. Let the bulk theory be given by the Einstein-Hilbert action

SEH =
1

16πGN

∫
dd+1x

√
−g (R− 2Λ) , (5.3)

where R is the Ricci scalar and Λ is the cosmological constant as before. Then the above
statement precisely means that δSEH = 0 onMq with the boundary condition ∂Mq = Bq.

As before in AdS/CFT, we may use a saddle point method to semiclassically approximate
the AdS partition function

ZString[Mq] ≈ e−SClassical[Mq ],

3In our case the only source turned on is the metric tensor.
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whereMq is the stationary point of the EH action as above. This together with (4.20) allows
us to calculate the Renyi entropy as

S
(q)
A =

1

1− q
log

(
Z[Bq]
Z[B]q

)
=

1

1− q
log

(
Z[Mq]

Z[M]q

)
≈ 1

1− q
(
q SCl[M]− SCl[Mq]

)
. (5.4)

Now, in order to calculate the entanglement entropy one has to take the q → 1 limit of
this expression. At this point our geometric description breaks down, we cannot simply talk
about 1.5 replica spacetime copies. This is where the great insight of Lewkowycz-Maldacena
(LM) comes to the help, who realised in [20] that the continuation to q ∈ R is much easier
in the gravitational context.

The LM derivation conveniently splits into three parts. A kinematic part in which we
implement the analytic continuation, a dynamic part in which we ensure that the solution
satisfies Einstein’s equations and a fianl part in which we show that the on-shell action indeed
gives the area law of the RT proposal.

5.3.1 Kinematics
Let us first review the geometric replica setup for q ∈ Z+. In this case the replica geometry
Bq is well understood as the q-fold branched cover of B, with branching over ∂A. This pro-
vides a proper boundary condition for the variational problem of findingMq. On the other
hand this viewpoint does not seem to allow continuation to q ∈ R.

At this point one may ask whether we have any more information about Bq to exploit. The
answer is yes, there is the Zq symmetry of the replica construction. Indeed one of the assump-
tions of the LM proof is that the Zq symmetry naturally extends to the smooth bulk replica
manifold Mq. It is though important to realise that this symmetry may not act smoothly
everywhere inMq, there may be Zq fixed points. We can then consider the quotient space
M̂q ≡Mq/Zq, which will have singular fixed points. We call the collection of these singular
points eq. The key assumption made by LM is that eq is a bulk codimension-2 surface. This
seems natural as we can think of eq as the extension of ∂A into the bulk.

To find out more about this singular locus, we adopt local coordinates adjusted to the the
codimension-2 surface eq. This means that we pick a coordinates such that: (yi), with
i ∈ {1, 2, · · · , d − 1}, are tangential and (x, tE) are normal to eq . The surface in these
coordinates is located at x = 0, tE = 0. Expanding the metric around eq gives

ds2
E = dt2E + dx2 + (γij + 2Kx

ijx+ 2Kt
ijtE)dyidyj + · · · ,

where Ka
ij is the extrinsic curvature of eq, γij is the induced metric on eq and the dots

represent higher derivative corrections. It is instructive to change to polar coordinated in
the normal direction by writing x ± itE = re±iτ , where τ ∼ τ + 2π for regularity. These
coordinates are shown in Figure 5.3. The replica symmetry in the bulk implies that near eq
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Figure 5.3: A pictorial representation of the bulk normal coordonates.
Here τ and r are the radial normal coordinates defined with respect to the
codimension-2 locus eq.

the coordinate τ has to instead be identified as τ ∼ τ + 2πq. Then, using the smoothness of
the covering bulk spaceMq this implies that the metric in M̂q near eq takes the form

ds2 = q2dr2 + r2dτ 2 + (γij + 2Kx
ijr

q cos τ + 2Kt
ijr

q sin τ)dyidyj + · · · . (5.5)

The importance in this formula comes from the non-trivial q-dependence. This means that
the identification τ ∼ τ + 2πq together with the smoothness of the covering space causes a
backreaction on the geometry. The quotient orbifold geometry M̂q allows us think differ-
ently about the q → 1 limit. The identification τ ∼ τ + 2πq can be equivalently thought of
as introducing a conical singularity in the quotient space with defect angle 2π/q.

This orbifolded viewpoint is very useful as we know what is means to have a conical defect
angle of 2π/q for any q ∈ R+, that is the analytic continuation is well understood in this
context. In the orbifolded construction we can also further exploit the Zq symmetry in the
bulk to concentrate on just one domain of its action, i.e. we may write

SCl[Mq] = q SCl[M̂q],

which will prove useful later. This, together with (5.4), implies that the Renyi entropy is
given by

S
(q)
A =

q

1− q
(
SCl[M]− SCl[M̂q]

)
, (5.6)

whereM = M̂1.

5.3.2 Dynamics
What remains now is to check what condition the dynamical field equations impose, and
then calculate the on shell action for the ansatz geometry. Calculating the Ricci scalar of
the geometry (5.5) we find contributions ∝ (q−1)

r
Ka, where Ka ≡ γijKa

ij is the trace of the



5.3. Derivation of the RT Proposal 37

extrinsic curvature [21]. Since this is divergent, it leads us to conclude that the EH dynamics
constrains the geometry of eq to ones with Ka = 0, i.e. to those with vanishing extrinsic
curvature. The fact that we are working with states with a time reflection symmetry t→ −t
already implies that Kt = 0. Thus the above constraint of the vanishing of the extrinsic
curvature precisely reproduces the minimal area constraint of the RT proposal, i.e.

lim
q→1

eq = EA, EA ⊂M s.t. Kx = 0.

5.3.3 On-Shell Action
We have now identified the minimal surface and have a good understanding of its geometry.
Hence all that remains is to check wether the on shell action of our ansatz gemetry (5.5)
indeed reproduces the area law of the RT proposal. LM in [20] noticed that instead of
working with the Renyi entropy, considering a closely related object

S̃
(q)
A ≡ q2∂q

(
q − 1

q
S

(q)
A

)
,

called the modular entropy, simplifes the calculation. This is because the modular entropy
then satisfies the relation

S̃
(q)
A = q2∂qSCl[M̂],

which follows directly from (5.6). Also, similarly to the Renyi entropy, the q → 1 limit of
the modular entropy still gives the entanglement entropy, that is limq→1 S̃

(q)
A = SA. This

allows us to instead only consider the variation of the on-shell action with respect to q,
which we now recognise as a continuous parameter. The variation in q is essentially the
variation of buandary conditions near the fixed point set eq. We can see this by considering
δg(q) = ∂qg(q) which satisfies ∂qg(q)|Bq = 0 and ∂qg(q)|eq 6= 0, where g(q) is the metric on M̂q

[5]. This implies that this q variation of the action will reduce to a boundary term localised
on this singular locus and thus will have no contribution from the conformal boundary.
We use a tubular regulator around eq, i.e. restricting to r > ε in Figure 5.3, we denote this
bulk codimension-1 regulating surface as eq(ε). The result is then given in the limit as ε→ 0.

We know that the variation of a gravitational action can always be decomposed into its
equations of motion and some other boudary terms, i.e.

δSCl[M̂q] =

∫
M̂q

(
EoM × δg(q) + dΘ

(
g(q), δg(q)

))
,

where Θ represents a general boundary term. For our gravity action, this is the standard
setup for a variatinal problem and the boundary term is given by the so called Gibbons-
Hawking boundary term, that is we have

SEH → SEH + SGH with SGH =
1

8πGN

∫
eq(ε)

√
−γ K,

where the integral is over the boundary, K is a boudary term and γ is the induced metric [22].
In our case the boundary term will be localised on the codimension-1 regulating surface eq(ε).
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For the orbifolded geometry (5.5), this boundary term is given by

∂qSCl =
1

16πGN

∫ √
−γ nN

(
∇M∂q gNM − gMP∇N ∂q gMP

)
,

as shown in [23]. In the q → 1 limit this indeed reproduces the RT proposal [20], i.e.

lim
q→1

∂qSCl[M̂q] = lim
q→1

Area(eq)

4q2GN

=
Area(eq)

4GN

= lim
q→1

S̃
(q)
A = SA.

This is remarkable, as we have only used one basic entry of the AdS/CFT dictionary.

Thus we see that the use of the orbifolded geometry M̂ allowed us not only to make sense of
general q, but it also allows to easily calculate the on-shell action via the modular entropy.
This derivation, nevertheless, does not address all the issues, for example there is no mention
of the homology constraint, which forms a major part of the RT proposal. The problem is
tackled in the recent paper [24].

5.4 Extremal Surfaces in AdS
We now show some examples of etremal surfaces in AdS and develop methods to find them.
We adopt local coordinates to the extremal surface yi and denote its induced metric γij,
which is defined as the pull-back on the AdS metric, i.e.

γij =
∂XM

∂yi
gMN

∂XN

∂yj
,

where XM(y) is the embedding of the extremal surface EA. The area fuctional of the surface
is then given by

S[EA] =

∫
dd−1y

√
−γ.

Assuming that the metric takes the form [5]

ds2
M =

1

z2
(dz2 + gµνdx

µdxν),

implies in turn that the area functional must be

S =

∫
dd−1y

√
det

(
∂z

∂yi
∂z

∂yj
+ gµν

∂xµ

∂yi
∂xν

∂yj

)
.

This choice is called the Fefferman-Graham coordinates, and the existance and consequences
of such coordinates is discussed in [25].

The above discussion allows us to nicely set up the variational problem, as we are required
to extremise S with the boundary condition EA|z=0 = ∂A. Once we have found the extremal
surface, it is only left to evaluate the on-shell action of the geometry.
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We now give a simple example of an extremal surface. The above extremization procedure
in general is done numerically as they can only be done analytically in the most simple of
theories, although in some cases the symmetries can be exploited.

For simplicity we consider the case of the vacuum state of CFT2 which will have a dual
geometry in AdS3, this is a nice low dimensional case to consider first. Let the CFT2 have
coordinates (x, t) and take A = {x = [−a,+a], t = 0}. Due to the static nature of the
vacuum, we can concetrate on t = 0, that is we are required to extremise the action

S =

∫
dy

√
x′2(y) + z′2(y)

z

with4 the boundary condition x(z = 0) = ±a. This is solved by the semicircle x(y) = a cos y
and z(y) = a sin y precisely as shown, for example, in Figure 5.2. We can then evaluate the
on-shell action of this solution to get the entanglement entropy.

4Note that the x inside the integral is the AdS coordinate while the x above is the CFT coordinate.
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6 Conclusion
Now, let us take a step back and appreciate what we have discussed. To start, we introduced
the basic building blocks of the AdS/CFT correspondence, namely Anti-de Sitter space and
conformal field theory. We then stated and explored many aspects of the AdS/CFT corre-
spondence including the calculation of boundary observables. Next, we gave an introduction
to quantum information theory, which we then used to formulate entanglement entropy in
QFT. We did this by representing QFT states by path integrals over different geometries.
This allowed for a precise definition of the reduced density matrix of a field theory and lead
to a replica construction to evaluate the powers of it. All this work with path integrals
allowed us to find an expression for the Renyi entropy in terms of partition functions over
some branched cover geometry of the original field theory spacetime. This turned out to be
very useful as it readily connects to the AdS/CFT correspondence through the equivalence
of the CFT and AdS partition functions.

After having developed all the ingredients, we proceeded to formulate the RT and HRT pre-
scriptions of holographic entanglement entropy. We saw how it connects field theory states
on one side to purely geometric objects on the other and discussed its implications. We then
gave a holographic proof of the entropy inequality formulas which provided a nice check on
the validity of the proposals. It also demonstrated the power and simplicity of the geometric
viewpoint. We then attempted to give a holographic derivation of the time-independent RT
proposal, which higlighted many of the subtle aspects of the relation. In the end, we had a
brief discussion on how to set up the problem of calculating extremal AdS surfaces.

All in all, we found that the entanglement entropy of a field theory is directly proportional
to the area of a specific codimension-2 bulk surface EA, that is

SA ∝ Area(EA).

This formula allows for a lot more fundamental study of the AdS/CFT correspondence and
may help understand the fabric of spacetime itself. We say this as what we have studied
proves a deep connection between quantum dynamics and pure geometry. This is very
exciting as we may hope to find out more about the quantum nature of spacetime, i.e.
quantum gravity.
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