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Abstract

Supersymmetry (SUSY) is a postulated symmetry of nature that relates el-
ementary integer-valued spin particles (bosons) with half-integer spin particles
(fermions). If SUSY is realised in nature, it could potentially resolve a number of
problems faced in physics, for example the hierarchy problem; the gauge coupling
unification; it might contain a dark matter candidate, etc...
This report focuses on how the spin-statistics and Noether’s theorem lead to the
Poincaré superalgebra, which is the supersymmetric extension of the Poincaré al-
gebra (the algebra of the symmetry group of Special Relativity). We will also
rederive its (anti)-commutation relations which completely specify this superalge-
bra.

Résumé

La supersymétrie (SUSY) est une symétrie postulée de la nature qui associe les
particules élémentaires de spin demi-entier (fermions) avec les particules de spin
entier (bosons). Si la supersymétrie est réalisée dans la nature, elle permettrait
de potentiellement résoudre de nombreux problémes en physique notamment le
probléme de la hierarchie, 'unification des constantes de couplage, elle pourrait
contenir un candidat pour la matiére noire, etc...
Dans ce rapport, nous allons redémontrer comment, a partir des théorémes de
Noether et spin-statistique, on obtient naturellement la superalgébre de Poincaré,
qui est 'extension supersymetrique de l’algébre de Poincaré (I’algébre du groupe
de symétrie de la relativité restreinte). Nous allons aussi redémontrer les relations
d’(anti)-commutations qui caractérisent complétement cette algébre.



Contents

1

Lie Superalgebras

1.1 Lie algebra for the bosonic charges . . . . . ... .. ... ... ..
1.2 A newsymmetry . . . . . . . ...
1.3 Conserved charges as a Lie superalgebra . . . . . .. .. ... ...
1.4 Compatibility . . . . ... ...
1.5 Beyond Lie superalgebras? . . . . . . ... ... ... ... . ....

The Super-Poincaré algebra
2.1 The (anti)-commutation relations . . . . .. .. ... ... L.
2.2 An equivalent formulation of the Poincaré superalgebra . . . . . . .

Conclusion
Review on the Poincaré Group and algebra

Review on the irreducible representations of the Lorentz group

13
13
15

16

17

19



1 Lie Superalgebras

In this section we will show that, in a quantum field theory setting, spin-statistics
and Noether’s theorems naturally lead to a Lie superalgebra structure.

Let £(®% ¥') be the Lagrangian of the theory and ®¢ and ¥’ be two sets of
bosonic and fermionic fields. Then, we consider a symmetry generated by B} and
B? leaving the lagrangian invariant, such that:

549 = (B})%,®" and 5,0 = (Bi)ij\lfj
We introduce the conjugate momenta associated to the fields:

oL o
(9,7 = 90,07

II, =

1.1 Lie algebra for the bosonic charges

Let’s find an expression for the conserved charge Bs. We start by varying the
lagrangian:

oL oL oL , oL -
0AL = —049+ ——0 Q) + — oAV ' + ———0 v 1
AL = 5301+ 5.5 040 + 5gidal + 55 G da@u ) (1)
We then use the following Euler-Lagrange equations:
oL oL
= _y —= 2
TR TER Tl 2)
oL oL
ovi a“a(ﬁﬂi) =0 (3)
04 and 0, commute, such that:
oL oL oL 4 oL -
AL = | Oy | 04D + —————=0,04P" Oy | 04V + ———=0,64V"
6= (Ogra) 0+ o + (O ) O + e
oL oL ,
= _— @a - - . \Ill
(G + ™)

Since this transformation is a symmetry, the lagrangian must remain invariant:
0aL = 0. We therefore find a conserved current that satisfies d,J* = 0:
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We can therefore express the conserved charge as By = —i [ d3zJ° since:

%BA = —z%/dg’xJo = —i/d3:c80J0 —z’/d%@ﬂi = —i/deauJ” =0

The —i factor is just a matter of normalisation convention. Finally:

oL oL o
- 3 7~ plya Fb 2\i \yJ
By @/d I(a(aoqw)(BA) , @ +a(aoqzi)(BA)ﬂ‘1’>

i / @ (IL,(BY)% 8 + p,(B2) )

We will now determine the action of the conserved charge on the fields and
momenta:

021 = [0, [ @ (B0 (8w
= [cpa, / deHb(B;)bC®C]
= —3 / d*z [®°, 11,] (BY)".®°
i / Pis® (z — y)5e(BL)" &
= (B}x)abq)b
where we used the equal time commutation relations from QFT.
[, Ba] = {Ha, —i/d3$ (II,(BY)". @ + Pi(Bi)ijq’j)]

_ / a1, (BY), [T, &°]
:_Hb(leﬁX)ba

Wi B,] = {\Iﬂ',—z’/di“x (Hb(Bi)bﬂ)“rpj(Bi)jk‘Pk)}

dgx 'SP BA) \I/k}

& (', p;} — 20,07) (BAYUF + p, ({W, (BLY U} — 2(BL) W)

=i [ a
i / da ([, py) (BLY 0 + e W, (B3, 0))
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—i / &Pz (i6@ (2 — y)0L(BY), WF — 20, W (B3)’, U% + 0 — 2p;(B3)’, UF0)

We notice that in the last term, anticommuting the two fermionic fields will make
a — appear which will cancel out with the second term.

= (B.Z)ik‘lf’“

[pi; Bal = {Pw _i/d3x (T,(B})".@° + p;(B3),¥")
=i [ @alpipy (B2 0
= =i [ & (oo (B + i, (B3, 0Y)
= —i / &z (({pi, pi} = 20i0) (BRY V¥ + p;({pi, (BR) ,U*} — 2(B3) ¥ i)
= —t / d*x (0= 2p;pi(BR)  U* +ip;0© (x — )07 (BR)  — 205 (BR)  ¥*ps)
= pi(BA); — i/d3x (205 (BEY V" = 2p;(BY (18 (x — y)o} — p;¥"))
= p;(BA); — i/d3w(—20j(33)jki5(3) (x —y)dt)
=Pj (le)ji - QPj(BEjS = Pj (le)ji

Knowing these relations, we now show that the bosonic charges give rise to
a Lie algebra. We therefore need to verify the Jacobi identity [Ba,[Bc, Bpl| +

[Be, [Bp, Bal] + [Bp, [Ba, Bc]] = 0 and that the algebra is closed [Ba, Bo] =
facPBp. Let’s first check the closure:

BBl = |1 [ & (L(BYA2 + p(B), ). Be
i / & ([(BY)4,8, Be] + [o:(BL) ¥, Bel)

We compute the first commutator:

[Ma(B4)",®", Be] = TL[(B4)"®", Be| + [Ma, Be](B4)",®°
= I1.(B})")(Bg) 4@ — Ma(Be) s(B1)", @
= I1,(B,)",(Be)" @ — Ia(Be)", (B4)" 4@

G[B}éh ]adq)d



and the second commutator:

(B2’ W7, Bel = pl(BA)'; %, Bel + lpi, Bel(B2)', ¥

= pi(B3)(B2) ) ‘Ifk — pi(B2)*(BY) ;¥
= pi(BR)(B2) V" — pi(B2)';(BY) W
= pi [3124’ ] k\I}k

We find:
(BaBo) = —i [ (IL[B B0+ B3, B2, @)
According to this relation, for the algebra to close we need to impose:
[Bh, Bt = fac”Bp et [B4, BE] = fac” B

And we find as wanted:

BBl = fac” (=i [ @l (Bh,0" 4 (B2
= fac"Bp

For the Jacobi identity, we notice that by bilinearity of the commutator, the Jacobi
identity will apply to B; and B; which are matrices. Therefore, by associativity
of the matrix product, Jacobi is trivially verified:

[BAv [BC’ BDH + [BCv [BDa BAH + [BDv [BAv BCH =0

Conclusion: The bosonic charges B give rise to a Lie algebra.

1.2 A new symmetry

We now consider a new symmetry generated by F} and F? that transforms bosonic
fields into fermionic fields and vice-versa:

§5;® = (F1)a. Ui and 6,0 = (F2)i d°

A computation similar to the one performed in the first part shows that the con-
served charge has the form:

Fr=—i / A (T, (F})" 0+ py(F2), ) (5)



We determine like before the action of the conserved charge upon the fields and

momenta:
[0, Fy] = (2%, —i / d (T,(FD)° 0+ pi(F2), )]
— i [ @sle )(F},

- (Fll)az‘lﬂ

[y, Fy] = [[,, —i / o (I,(F})" 0 + pi(F7),2")]

i [ Capiry )

= _pZ(FIQ)Za

(Vi Fy} = {xlﬂ,—z'/d% (o (F}) Y 4 pi(F7)', @)}

=i [ @ (W IL(FD ) + (Wi (FPY,2))

First anticommutator:

{W o (F7)* 07} = Mo (57 {97, W7} + [0 1, (F7)°,] W7
T N———
= =0

=0
Second anticommutator:

{7, i (F7) @) = ps(F7) {07, @) + [V, py (F7), )@
= 2p;(F7), @' + ({T", p;} — 2p; ") (F}) @
= 2p;(F7) @40 + (W', p; }(F}) @ — 2p, W' (F7), @
={V, p}(F7),@°
Finally:

R} = —i / BV, p}(F2Y 00
— (F2), 2"



Similarly:
o Fr} = =i [ @ (0 TLED" W7} + (s (FY,2))
First anticommutator:

{00, L (FH W9} = T (F})* {pi, W + [p, T (F}), 09
——

=0

Second anticommutator:

{pi, pj(F}Y @} = p;(F7) {pi, @} + [pi, ps] (F7) 0"
= 2p;(F7) .0i®" + ({pi, i} — 2pp:) (F}) ,@°
= 2p;(FF) ,pi®" — 2p;pi( F}) ,@°
—0

Finally:

{Pu FI} = Ha(FIl)ai

We will now show that the composition of two fermionic operators F; and F is a
bosonic operator:

(Fr Fah = =i [ (IR0 F) + (i F])8°, Fa})
First anticommutator:

{I(F)" W', Fy} = T (Fp )" {9, Fy} — [L(F})*, Fy] 9
= I (F} )" (F7),@" + ps(Fj) o (F7) "0

Second anticommutator:

{pi(F7)'a @, Fi} = pi(FT)o[®%, Fi] + {pi(F})', F}0°
= pi(F7) o (F7)" 97 + I (F))",(Ff)', @

We get:
{Fy,F;} = —i/d% (I (F F; — FyF7)%, " + pi(FTFj + F7F} ), W7)
Once again, we impose the algebra closure:
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FllF}"‘F}FIQ:gIJABi\ et FI2F}+F}F11:QIJAB,24

We finally get:

(F1.F)} = —ig,,* / (T (BY) 8" + pi( B3) 1)

= gIJABA

1.3 Conserved charges as a Lie superalgebra

To show that the conserved charges form a Lie superalgebra we need to check the
Lie super-identities and [Ba, Bc| = fac”Bp, {F1, F;} = g;,2Ba and [Ba, Fy] =
h/AIJFJ.

The first two equalities have been checked previously, let’s prove the third one:

[Ba, F1] = —z'/d3x (MMa04®°, Fi] + [pi0a W', F])

First anticommutator:

[HaéACID“, F[] = Ha[(SA(I)a, F[] + [Ha, F]](SA(PCL
= 11467049 + 6;11,0 4P

Second anticommutator:

[pi(SA\I/i, Fr| = pi[(SA\Ifi, Fil + [pi, F[](SA\W
= pi({0aW', F1} = 2F164") + ({ps, F1} — 2F1p) 04 ¥’
= 0i0104V" — 2p; F10 4" + 01pi0 4V’ — 2F1p;6 4 V"
= i01040" — 281004V + 2F1p;64V" + §1pi0 40" — 2F1p;04 0"
= pi515A\Ifi - 51,0i5A\IJi

The sum of the two commutators gives:

[HQ(FAQ)a’ F]] + [pz‘(;A\I/i, F[] = 11,070 49 + 0;11,0 4P + piéjéA\I/i — (5[pi5A\I/i
= 1L, (Ba)"(F})" 9" — pi(F7)'(Ba)"®" + pi(BY) (F7),®°
—IL,(Fy)"(B%),; ¥
= II, (BYF} — FIB2)" W' + p; (BYF? — F2BY)' @0

As usual, we want the algebra to close:

11



BY\F} — FIB% = h,,”F} and B4F? — F2BY = h,,,’ F?

Finally:

(B, Fi] = (—z’ R AGIR pz-<F3>z<I>a>)
= hAIJFJ

The Superalgebra is indeed closed and like before the associativity of the matrix
product ensures that the Jacobi super-identities are verified:

[Ba, [Bc, Bpl]l + [Be, [Bp, Bal] + [Bp, [Ba, Bcl]] =0

[Ba, [Be, Fi]] + [Be, [F1, Bal] + [Fr, [Ba, Bel]] =0
[Ba, {F1, Fs}] + {F1, [Fy, Bal} = {F),[Ba, Fi]} =0
(F1,{Fy, Fx}| + [Fy,{Fk, Fi}| + [Fx,{F1, F;}] =0

Conclusion: The conserved charges form a Lie superalgebra.

1.4 Compatibility

In this section we show that the transformation laws considered thus far are com-
patible with the structure of a Lie superalgebra.
To do so let’s consider first:

(6.4, 65]0% = (5405 — 6564) D"
= [[(I)a7 BB]7 BA] - H(I)a7 BA]7 BB]
= [[BA7 BB]a (I)a]

We recover as expected the Jacobi identity. Moreover, a composition of symmetries
is still a symmetry so:

[64,05]" = X 59000
= [, X4 Bc]
= [~ X" Bc, 9]
By equating both expressions we recover the fact that the algebra of the bosonic
charges closes with structure constants f,z¢ = —X,5°. We showed that the

transformation laws are compatible with a Lie algebra structure but the generali-
sation to the case of Lie super-algebras follows the same path of reasoning.

12



1.5 Beyond Lie superalgebras?

We can wonder if in a relativistic quantum field theory setting, we can obtain other
structures than Lie superalgebras. There are two possible ways to generalize:

- The first one is to consider a new kind of charge other than bosonic and fermionic,
which would be bold but not necessarily excluded (see Plektons).

- The second one would be to use multiple (anti)-commutators to get new algebraic
structures (see ternary algebras for example)

2 The Super-Poincaré algebra

Let g, ® g, be the Poincaré superalgebra, for which,
go =1s0(1,3) = {M,,, Py, p,v =0, ..., 3}
is the Poincaré algebra and,

g = (%70)@(07%) :{Qma:va}@{Qdad:va}

To review the Poincaré algebra and the representations of the Lorentz group, see
appendix.

2.1 The (anti)-commutation relations

We start by computing the commutators [M, Q] and [P, Q]. For this purpose we
introduce o# = (1, @) and 6 = (1, =) with & the Pauli matrices.
We then define:

1

(o), =7 (0"5" = a"5"),”

ST

(6‘“’)‘5‘3i1 (60" — 5" o),

which satisfy the Lorentz algebra. Given that @), is a spinor, it transforms accord-
ing to the following law Q!, = exp(—iw,0"), Qs
It also serves as an operator that transofrms under Lorentz as Q', = UTQ,U with

U = exp(—iw,, M"). By equating these two relations to first order we get:

4 v i v 4 v
(1 - 5&);“,0'“ )aﬁQﬂ = (1 - §w,ul/Mu )Qa(l + §W;WMM )
1 1
= Qa - §wuu<guu)a/8@,3 = Qa - §W,u1/<MMVQa - QQMMV)

= [M", Q] = (), Qs

13



We show in the same way that:
M, Q) = (), @

We know that @), lies in the (%, 0) representation and P* is in the (%, %) one,

therefore the commutator must either be in the (1, 1) or in the (0, 1) representation.
The first one is not possible because there are no generators of the superalgebra
that lie in this representation. This means that we can write in full generality:

[P, Qa] = c(0")ac Q"

By taking the hermitian conjugate, and taking care of indices, we have:
[P, Q% = ¢*(6")**Qa

By applying Jacobi to P*, P¥ and @, we find:

0= [PN, [Pyv QaH + [PV7 [QOHPMH + [Qav [PM’ PVH
=0

= ¢(0")aa[P", Q%] = c(0")aa[P”, Q°]

= ¢(0")aac" (@) Qp — c(0")aac™ (@) Qs

= [c[*(0"5" = 0"5")," Qs

= —dilef (¢"").0 Qs

——
#0
This relation must be verified for a general ()3 this means that we necessarily have
c|? = 0.
Conclusion: N
[P*, Qo] = [P*, Q%] =0
We are now looking for anticommutation relations between fermionic genera-

tors. To do so we first notice that (3,0) ® (0,3) = (3,3) and the only vector in

our algebra is the four-momentum. We have :

{Qaa Qo'c} = _iCte<0u)adPM (6)

Let’s show that the constant is positive:
Let |¥) be a state in our Hilbert space. We can write:

—iC*(0") 06 (V| P,|T) = (U{Qq, Qa}|T)
= (V|QaQLIT) + (¥]QIQq| W)
= QL) + |QalT) P > 0

14



by summing over o and & we find

—iC"tr(o")(U|P,|¥) = —i2C*6" (V| P,|¥)
= —i20" (V| P° |¥) >0
~—~
—iH
By positivity of the energy we have C* > 0 and by convention we set the constant
to 2 and we get:

{Qa, Qa}t = —2i(0")ac Py (7)

For the anticommutator {Q,, Qs} we see that the result will be a linear com-
bination of operators in the (0,0) and (1,0) representations. The only element in
the algebra in the (1,0) representation is the self dual of M* because it is the
only rank 2 anti-symmetric tensor in the algebra.

Indeed we us the self duality propretry of the #” matrix to get:

L pvpA — MV 1 prpA — MV
5€ ooy = ot = Ze op\My, = o M,

We can write :
{Qa, Qp} = Keap + K'(0")ap M, (8)

The left hand-side is symmetrical with respect to o and S whereas the first term
of the right hand side is anti-symmetric with respect to these indices so K = 0.
Moreover, the left handside commutes with P*, we can see that by using the Jacobi

super-identity : [P,{Q,Q}] — {[P,Q],Q} — {Q, [P, Q]} = 0, we've shown that P
commutes with ) so the last two terms vanish like expected. However, the second

term of the right hand-side of equation (8) does not commute with P so K’ = 0.
We reason similarly for right-handed spinors and we get:

{Qu:Qs) ={Q%. Q%) =0 9)

2.2 An equivalent formulation of the Poincaré superalgebra

Let’s give an equivalent formulation of the Poincaré superalgebra by introducing

4-component spinors:
Q—(@a
o= :
Qa

[Qa, P*] =0 (10)

First off we trivially have:

Then we also find easily:
[M*, Q0] = (), Qs (11)
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with 2#” being the Lorentz algebra generators in the (%, 0)® (0, %) representation.
Finally for the fermionic sector:

@an={( &) (ee))

[ Q0 Qs} {Qa, Q%)
{Q57Qd} {deQﬁ}

:< 0 wm@kﬁ)
{Q°, Q%}eps 0

_ 0 —2i(0") o€ P,
—2i(5’“)6a€ggpu 0

_ o 0 (0")a €gs 0
= —22( (GH)% 0 gl ) ( 0 P,
= —2i (v*C') P,

with C being the charge conjugation matrix. We have:

{Qu, @} = -2 (v"C7),, P (12)

We can make one final comment by rewriting the supersymmetry algebra in
the Majorana representation where the Dirac matrices are imaginary. In this case
we see that the constant structure are all imaginary.

We can then absorb the i factor by redefining our generators and this shows us
that the algebra is real, which was not clear in the beginning.

3 Conclusion

We have seen how considering a relativistic quantum field theory naturally lead to
the strucuture of Lie superalgebras. We then went on to study the basic properties
of the supersymmetry algebra, namely the Poincaré superalgebra.The next steps
would be to focus on the representations of the extended supersymmetry (meaning
with N supercharges).

For reference, we can mention that since its discovery, supersymmetry has
found applications in other areas of physics such as condensed matter, optics and
dynamical systems to name a few.

On a personal level, considering that I have been interested in learning super-
symmetry, I was very pleased to complete my internship this summer. Through
the length of this internship, I was able to apply what I learned this year in field
theory and Lie algebras. The completion of this internship left me even more eager
to pursue my higher learning in theoretical physics.
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A Review on the Poincaré Group and algebra

The Poincaré group corresponds to the isometry group of Minkowski space-time

of Special Relativity. It’s a 10-dimensional non-compact Lie group composed of

the Lorentz group (3 rotations and 3 boosts) to which we add the 4 translations

(formally the semi-direct product of the Lorentz group with the translations).
Let’s develop the main results.

We define the Lorentz group as the matrix group that preserves the following

minkoswkian scalar product:

Ny’
The Lorentz transformation takes the form 2’ = Az so we have:
Nuw®"y” = 1 A 2PN Y7 = ANTnA =1 (13)

The set of matrices A that verify this relation is the Lorentz group SO(1,3). The
Lorentz group has 4 connected components. The part connected to the identity
SO(1, 3)1 is called the proper orthochronous Lorentz group (because it preserves
space orientation and the arrow of time). It’s this group that will be considered
from now on. This group contains the group of rotations SO(3) as a subgroup and
the boosts (that do not form a group on their own).

To obtain the Poincaré group, we add the translations, then 4-vectors will
transform in the following way:

=T\ a)=Az+a (14)

We write 150(1,3) the Poincaré group (I for inhomogenous). Let’s study the
assiocated algebra. U(A,a) are the representations of the Poincaré group acting
on a vector space. The Poincaré Group being a Lie group, we can write its elements
as: ,

U(A, a) _ 6%6””Mwew”Pu (15)
where the explicit form of the generators M and P depends on the representation.
We then obtain the commutations relations by considering the following equality:

U(A, a)UN,a YU (A, a) = UANA a+ Ad' — AN'Aa)

After some involved calculations we find that the commutations relations of the
Poincaré algebra are:

i[M™ MP) = o MY + P MHT — P MY — 5° M*P (16)
i[P*, MP?] = ntP P? — nH° PP (17)
[P, P"] =0 (18)

We can then define the SO(3) generators J (angular momentum) and the boosts
generators K as:

17



Jii — %Eijijk, KZ:MOZ

The Poincaré algebra commutation relations then take the form:

[J4 J] = deijJ” [J', P7] = iy, P [P, PPl =0
[ K9] = dej K" [K', P'] = i6;; P" [J5, P =0
(K, K] = —ie;j,J" [K*, P°] = iP’ [P, P’ =0

18



B Review on the irreducible representations of the
Lorentz group

To review the Lorentz group we will complexify the Lorentz algebra which means
that we consider : s0(1,3)c = s0(1,3) ® C.
In this algebra we can define the following elements:

Ni=5(J' +iK"),  N'=1(J' —iK")

2

for these generators of s0(1,3)c we get the following commutation relations:

[Ni,Nj] = iGijka
[Ni,Nj] = iEijka
[N, %] =0

Therefore, the N? and N* form two independant sub-algebras sl(2,C) that com-
mute with each other. We have:

s0(1,3)c = sl(2,C) @ sl(2,C) (19)

We obtain the representations of so(1,3)c by tensoring two representations of
sl(2,C). Those are labeled by an integer n € N that is twice the "spin". Knowing
that the operator N' is the conjugate of N we have:

s0(1,3) = sl(2,R) @ sl(2,R) (20)

The representations of so(1,3) will be labeled by two integers and we will write
them as (g, %)
A few examples :

- The (0,0) representation is the 1-dimensional trivial representation, it corre-

sponds to scalars.

- The (3,0) representation is 2-dimensional and the vectors on which it acts are
called left-handed spinors (it’s the case of @) in the Super-Poincaré algebra).

- The (0,1) is also 2-dimensional and it acts on right-handed spinors (Q in our
superalgebra).

- The (%, %) is 4-dimensional and we identify it with the defining vector represen-
tation of so0(1,3) which acts on 4-vectors.
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