Homework Sheet 9

MATH431 - Introduction to Modern Particle Theory

(Dr Thomas Teubner)

1. Suppose we have two complex scalar fields, ϕ_{1} and ϕ_{2}, which form a doublet of $S U(2)_{I}$. Write down the Lagrangian and show that $m_{1} \neq m_{2}$ entails explicit breaking of the symmetry. Can we write a Higgs potential which preserves the symmetry? Describe how to break the symmetry in this case.
2. Let the Lagrangian for three interacting real scalar fields $\phi_{1}, \phi_{2}, \phi_{3}$ be given by

$$
L=\frac{1}{2}\left(\partial_{\mu} \phi_{i}\right)^{2}-\frac{1}{2} \mu^{2} \phi_{i}^{2}-\frac{1}{4} \lambda\left(\phi_{i}^{2}\right)^{2},
$$

with $\mu^{2}<0$ and $\lambda>0$, and where the summation over i is implied.
(a) Explain the meaning of the different terms and to which elements of the corresponding Feynman rules they lead. Why is μ^{2} chosen negative, but λ positive?
(b) Show that after spontaneous symmetry breaking this Lagrangian describes one massive field with mass $\sqrt{-2 \mu^{2}}$ and two massless 'Goldstone bosons'.
3. In perturbative QCD the scale (energy) dependence of the 'running' coupling $\alpha_{s}=g_{s}^{2} /(4 \pi)$ is described by the differential equation

$$
\frac{\mathrm{d} \alpha_{s}}{\mathrm{~d} \ln E}=-b_{0} \alpha_{s}^{2}-b_{1} \alpha_{s}^{3}+\mathcal{O}\left(\alpha_{s}^{4}\right),
$$

with $b_{0}, b_{1}>0$ the first two coefficients of the QCD beta-function.
(a) Neglect the term $\sim \alpha_{s}^{3}$ and verify that the solution is given by

$$
\alpha_{s}(E)=\frac{\alpha_{s}(\mu)}{1+b_{0} \alpha_{s}(\mu) \ln (E / \mu)},
$$

where the initial condition is fixed by the coupling $\alpha_{s}(\mu)$ at a reference scale μ.
(b) Show that by defining a mass scale

$$
\Lambda_{\mathrm{QCD}}=\mu \exp \left[-\frac{1}{b_{0} \alpha_{s}(\mu)}\right]
$$

the solution reads

$$
\alpha_{s}(E)=\frac{1}{b_{0} \ln \left(E / \Lambda_{\mathrm{QCD}}\right)}
$$

Experimentally, $\Lambda_{\mathrm{QCD}} \simeq 200 \mathrm{MeV}$. Sketch the behaviour of $\alpha_{s}(E)$ and discuss the physical consequences in the two cases $E \rightarrow \Lambda_{\mathrm{QCD}}$ and at asymptotically large energies.
(c) Derive a solution similar to the one in part (b), but taking into account the term $-b_{1} \alpha_{s}^{3}$ in the differential equation and chosing a suitable redefinition of Λ_{QCD} (formula for Λ_{QCD} at next order not required).
4. The decomposition of the fundamental representation of $S U(5)$ under $S U(3) \times S U(2) \times U(1)$ is given by:

$$
5=\left(3,1,-\frac{2}{3}\right)+(1,2,1)
$$

(i) Derive the charge assignment of the leptoquark vector bosons in the adjoint (the 24) representation.
(ii) Draw the Feynman diagrams which mediate proton decay via leptoquark exchange.

