Homework Sheet 6 MATH431 - Introduction to Modern Particle Theory

(Dr Thomas Teubner)

1. The Dirac wave function for the ground state of the hydrogen atom has the form (spin-up state, standard Dirac matrix representation)

$$
\psi_{\uparrow}(r, \theta, \phi)=R(r)\left(\begin{array}{c}
1 \\
0 \\
i a \cos \theta \\
i a e^{i \phi} \sin \theta
\end{array}\right)
$$

where $a=\left(1-\sqrt{1-\alpha^{2}}\right) / \alpha \approx \alpha / 2$ (with $\alpha \approx 1 / 137$ the QED coupling) and R is a function of the radial variable r only.
(a) Investigate whether ψ_{\uparrow} is an eigenstate of L_{z}.

Hint: For the angular momentum operator L_{z} in spherical coordinates, see Homework Sheet 1, problem 2. (b).
(b) Find the expectation value of L_{z} and discuss the result.

Hint: Don't forget to normalise the state ψ_{\uparrow}.
What would happen in the non-relativistic limit?
(c) Show that ψ_{\uparrow} is an eigenstate of J_{z} and find its eigenvalue.
2. Derive the conservation equation

$$
\partial_{\mu} J_{V}^{\mu}=0
$$

for the four-vector current density $J_{V}^{\mu}=\bar{\psi} \gamma^{\mu} \psi$, using the covariant form of the Dirac equation and the relation $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$.
Show that the axial four-vector current density $J_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ is not conserved but instead satisfies the covariant equation

$$
\partial_{\mu} J_{A}^{\mu}=2 i m \bar{\psi} \gamma^{5} \psi
$$

3. Derive the Gordon decomposition of the Dirac transition current,

$$
\bar{\psi}_{f} \gamma^{\mu} \psi_{i}=\frac{1}{2 m} \bar{\psi}_{f}\left[\left(p_{f}+p_{i}\right)^{\mu}+i \sigma^{\mu \nu}\left(p_{f}-p_{i}\right)_{\nu}\right] \psi_{i}
$$

where $\sigma^{\mu \nu}=\frac{1}{2} i\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)$.
[Hint: Use the Dirac equations $\bar{\psi}_{f}\left(\not p_{f}-m\right)=\left(\not p_{i}-m\right) \psi_{i}=0$.]

