Homework Sheet 5 MATH431 — Introduction to Modern Particle Theory (Dr Thomas Teubner)

1. Electrodynamics in covariant form:

Let A_{μ} be the electromagnetic vector potential. The electromagnetic field strength tensor is then defined as

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \,.$$

(a) Show that Maxwell's equations (in the absence of sources) in four-vector notation can be derived from the electromagnetic Lagrangian given by

$$L_{\text{e.m.}} = -\frac{1}{4} F_{\alpha\beta} F^{\alpha\beta}.$$

- (b) Show that $L_{\text{e.m.}}$ is invariant under the transformation $A_{\mu} \to A_{\mu} \partial_{\mu}\Lambda$, where Λ is a scalar function.
- (c) Show that by imposing U(1) symmetry, i.e. invariance of the Lagrangian under such a local U(1) transformation, a mass term for the photon is forbidden.
- (d) Now include the source-term $-j^{\mu}A_{\mu}$ in the Lagrangian and derive the corresponding form of Maxwell's equations with the external current j^{μ} . Show that this directly implies the conservation of the four-current, i.e. $\partial_{\mu}j^{\mu} = 0$.

2. γ -gymnastics:

- (a) Defining $\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$, show that (i) $\gamma^{5\dagger} = \gamma^5$, and (ii) $\{\gamma^5, \gamma^{\mu}\} = 0$.
- (b) By inserting $(\gamma^i)^2 = -1$ for some i = 1, 2, 3 (whereas $(\gamma^0)^2 = 1$), write both $\gamma^0 \gamma^1 \gamma^2$ and $\gamma^0 \gamma^1 \gamma^3$ as a product $\gamma^5 \gamma^{\nu}$ for some $\nu = 0, 1, 2, 3$.
- (c) Prove the following relations:

$$\operatorname{tr}[\gamma_{\mu}\gamma_{\nu}] = 4\eta_{\mu\nu} \,,$$

$$\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma} = 2\eta_{\mu\nu}\gamma_{\rho}\gamma_{\sigma} - 2\eta_{\mu\rho}\gamma_{\nu}\gamma_{\sigma} + 2\eta_{\mu\sigma}\gamma_{\nu}\gamma_{\rho} - \gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}\gamma_{\mu},$$

$$\operatorname{tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}] = 4[\eta_{\mu\nu}\eta_{\rho\sigma} - \eta_{\mu\rho}\eta_{\nu\sigma} + \eta_{\mu\sigma}\eta_{\nu\rho}].$$