Homework Sheet 3

MATH431 - Introduction to Modern Particle Theory

(Dr Thomas Teubner)

1. The defining equation for the Lorentz group may be written as

$$
\begin{equation*}
L^{T} \eta L=\eta \tag{1}
\end{equation*}
$$

Consider a 2-dimensional spacetime for which $\eta=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Show that the standard Lorentz transformation,

$$
L=\left(\begin{array}{cc}
\gamma & -\frac{\gamma v}{c} \\
-\frac{\gamma v}{c} & \gamma
\end{array}\right)
$$

where $\gamma=1 / \sqrt{1-\frac{v^{2}}{c^{2}}}$, satisfies the above condition.
2. Show that $\mathcal{L}_{+}^{\uparrow}$ is a group. This is done as follows:
(i) Use Eq. (1) to show that

$$
\begin{equation*}
L \eta^{-1} L^{T}=\eta^{-1} . \tag{2}
\end{equation*}
$$

Hint: Recall that for matrices $(A B)^{-1}=B^{-1} A^{-1}$.
(ii) We now have from Eqs. (1), (2)

$$
\begin{equation*}
\eta_{\alpha \beta} L^{\alpha}{ }_{\mu} L^{\beta}{ }_{\nu}=\eta_{\mu \nu}, \quad \eta^{\alpha \beta} L^{\mu}{ }_{\alpha} L^{\nu}{ }_{\beta}=\eta^{\mu \nu} . \tag{3}
\end{equation*}
$$

Let $\mathbf{l}=\left(L^{1}{ }_{0}, L^{2}{ }_{0}, L^{3}{ }_{0}\right)$ and $\overline{\mathbf{l}}=\left(\bar{L}^{0}{ }_{1}, \bar{L}^{0}{ }_{2}, \bar{L}^{0}{ }_{3}\right)$. By putting $\mu=\nu=0$ in Eq. (3), show that $|\mathbf{l}|=\sqrt{\left(L^{0}{ }_{0}\right)^{2}-1}$ and $|\overline{\mathbf{1}}|=\sqrt{\left(\bar{L}^{0}{ }_{0}\right)^{2}-1}$.
(iii) By considering $(\bar{L} L)^{0}{ }_{0}=\bar{L}^{0}{ }_{\alpha} L^{\alpha}{ }_{0}$, show that

$$
(\bar{L} L)^{0}{ }_{0}=\bar{L}^{0}{ }_{0} L^{0}{ }_{0}+\overline{\mathbf{l}} \cdot \mathbf{l} .
$$

(iv) Use the Schwartz inequality

$$
|\overline{\mathbf{l}} \cdot 1| \leq|1||\overline{\mathbf{l}}|
$$

to show that

$$
(\bar{L} L)^{0}{ }_{0} \geq \bar{L}_{0}^{0} L_{0}^{0}{ }_{0}-\sqrt{\left(\bar{L}^{0}{ }_{0}\right)^{2}-1} \sqrt{\left(L^{0}{ }_{0}\right)^{2}-1} .
$$

(v) Now show that

$$
\begin{aligned}
(x-y)^{2} \geq 0 \Rightarrow & x^{2} y^{2}-2 x y+1 \geq\left(x^{2}-1\right)\left(y^{2}-1\right) \\
\Rightarrow & (x y-1)^{2} \geq\left(x^{2}-1\right)\left(y^{2}-1\right) \\
\Rightarrow & \text { either } \quad x y-1 \geq \sqrt{x^{2}-1} \sqrt{y^{2}-1} \\
& \text { or } \quad x y-1 \leq-\sqrt{x^{2}-1} \sqrt{y^{2}-1} .
\end{aligned}
$$

Deduce that if $x, y \geq 1$ then $x y-1$ is non-negative and we must have

$$
x y-\sqrt{x^{2}-1} \sqrt{y^{2}-1} \geq 1
$$

Finally combine with (iv) to deduce that if $\bar{L}^{0}{ }_{0} \geq 1$ and $L^{0}{ }_{0} \geq 1$, then $(\bar{L} L)^{0}{ }_{0} \geq 1$.
(vi) Use the fact that $\operatorname{det}(\bar{L} L)=\operatorname{det} \bar{L} \operatorname{det} L$ to deduce that

$$
\operatorname{det} \bar{L}=\operatorname{det} L=1 \quad \Rightarrow \quad \operatorname{det}(\bar{L} L)=1
$$

(vii) We can now deduce that $L \in \mathcal{L}_{+}^{\uparrow}$ and $\bar{L} \in \mathcal{L}_{+}^{\uparrow} \Rightarrow(\bar{L} L) \in \mathcal{L}_{+}^{\uparrow}$. Together with the obvious fact that $1 \in \mathcal{L}_{+}^{\uparrow}$, this is most of what we need to show that $\mathcal{L}_{+}^{\dagger}$ is a group.
(viii) We still need to show that $L \in \mathcal{L}_{+}^{\uparrow} \Rightarrow L^{-1} \in \mathcal{L}_{+}^{\uparrow}$. Note that from Eq. (1) $\Rightarrow L^{-1}=$ $\eta^{-1} L^{T} \eta$. So clearly $\left(L^{-1}\right)^{0}{ }_{0}=L^{0}{ }_{0}$. Moreover, $\operatorname{det} L^{-1}=\operatorname{det} \eta^{-1} \operatorname{det} L^{T} \operatorname{det} \eta=1$. QED.
3. Let \vec{J} and \vec{K} be the generators of rotations and boosts, respectively.
(a) Show that

$$
J^{2}-K^{2} \text { and } \vec{J} \cdot \vec{K}
$$

are Lorentz invariants, i.e. that they commute with all the generators of the Lorentz group.
Hint: If you use that \vec{J}_{+}and \vec{J}_{-}are generating $S U(2) \otimes S U(2)$ you will not need any explicit calculation.
(b) Assume a representation $\left(j_{1}, j_{2}\right)$ of $S U(2) \times S U(2)$. How many states are in this representation? How does this representation decompose into irreducible representations of $S U(2)_{J}$, where J is the total angular momentum?

