Homework Sheet 3 MATH431 — Introduction to Modern Particle Theory (Dr Thomas Teubner)

1. The defining equation for the Lorentz group may be written as

$$L^T \eta L = \eta \,. \tag{1}$$

Consider a 2-dimensional spacetime for which $\eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Show that the standard Lorentz transformation,

$$L = \begin{pmatrix} \gamma & -\frac{\gamma v}{c} \\ -\frac{\gamma v}{c} & \gamma \end{pmatrix},$$

where $\gamma = 1/\sqrt{1 - \frac{v^2}{c^2}}$, satisfies the above condition.

- **2.** Show that $\mathcal{L}_{+}^{\uparrow}$ is a group. This is done as follows:
 - (i) Use Eq. (1) to show that

$$L\eta^{-1}L^{T} = \eta^{-1}.$$
 (2)

Hint: Recall that for matrices $(AB)^{-1} = B^{-1}A^{-1}$.

(ii) We now have from Eqs. (1), (2)

$$\eta_{\alpha\beta}L^{\alpha}{}_{\mu}L^{\beta}{}_{\nu} = \eta_{\mu\nu}, \quad \eta^{\alpha\beta}L^{\mu}{}_{\alpha}L^{\nu}{}_{\beta} = \eta^{\mu\nu}.$$
(3)

Let $\mathbf{l} = (L^{1}_{0}, L^{2}_{0}, L^{3}_{0})$ and $\overline{\mathbf{l}} = (\overline{L}^{0}_{1}, \overline{L}^{0}_{2}, \overline{L}^{0}_{3})$. By putting $\mu = \nu = 0$ in Eq. (3), show that $|\mathbf{l}| = \sqrt{(L^{0}_{0})^{2} - 1}$ and $|\overline{\mathbf{l}}| = \sqrt{(\overline{L}^{0}_{0})^{2} - 1}$.

(iii) By considering $(\bar{L}L)^0{}_0 = \bar{L}^0{}_\alpha L^\alpha{}_0$, show that

$$(\bar{L}L)^0{}_0 = \bar{L}^0{}_0L^0{}_0 + \bar{\mathbf{l}}\cdot\mathbf{l}.$$

(iv) Use the Schwartz inequality

 $|\overline{l}\cdot l| \leq |l||\overline{l}|$

to show that

$$(\bar{L}L)^0_0 \ge \bar{L}^0_0 L^0_0 - \sqrt{(\bar{L}^0_0)^2 - 1} \sqrt{(L^0_0)^2 - 1}$$

(v) Now show that

$$\begin{aligned} (x-y)^2 &\ge 0 \implies x^2y^2 - 2xy + 1 \ge (x^2 - 1)(y^2 - 1) \\ &\Rightarrow (xy - 1)^2 \ge (x^2 - 1)(y^2 - 1) \\ &\Rightarrow \text{ either } xy - 1 \ge \sqrt{x^2 - 1}\sqrt{y^2 - 1} \\ &\text{ or } xy - 1 \le -\sqrt{x^2 - 1}\sqrt{y^2 - 1} . \end{aligned}$$

Deduce that if $x, y \ge 1$ then xy - 1 is non-negative and we must have

$$xy - \sqrt{x^2 - 1}\sqrt{y^2 - 1} \ge 1$$

Finally combine with (iv) to deduce that if $\bar{L}^0_0 \ge 1$ and $L^0_0 \ge 1$, then $(\bar{L}L)^0_0 \ge 1$.

(vi) Use the fact that $\det(\bar{L}L) = \det \bar{L} \det L$ to deduce that

$$\det \bar{L} = \det L = 1 \quad \Rightarrow \quad \det(\bar{L}L) = 1.$$

- (vii) We can now deduce that $L \in \mathcal{L}_{+}^{\uparrow}$ and $\overline{L} \in \mathcal{L}_{+}^{\uparrow} \Rightarrow (\overline{L}L) \in \mathcal{L}_{+}^{\uparrow}$. Together with the obvious fact that $1 \in \mathcal{L}_{+}^{\uparrow}$, this is most of what we need to show that $\mathcal{L}_{+}^{\uparrow}$ is a group.
- (viii) We still need to show that $L \in \mathcal{L}_{+}^{\uparrow} \Rightarrow L^{-1} \in \mathcal{L}_{+}^{\uparrow}$. Note that from Eq. (1) $\Rightarrow L^{-1} = \eta^{-1}L^{T}\eta$. So clearly $(L^{-1})^{0}_{0} = L^{0}_{0}$. Moreover, det $L^{-1} = \det \eta^{-1} \det L^{T} \det \eta = 1$. QED.
- **3.** Let \vec{J} and \vec{K} be the generators of rotations and boosts, respectively.
 - (a) Show that

$$J^2 - K^2$$
 and $\vec{J} \cdot \vec{K}$

are Lorentz invariants, i.e. that they commute with all the generators of the Lorentz group.

Hint: If you use that \vec{J}_+ and \vec{J}_- are generating $SU(2) \otimes SU(2)$ you will not need any explicit calculation.

(b) Assume a representation (j_1, j_2) of $SU(2) \times SU(2)$. How many states are in this representation? How does this representation decompose into irreducible representations of $SU(2)_J$, where J is the total angular momentum?