Homework Sheet 2

MATH431 - Introduction to Modern Particle Theory

(Dr Thomas Teubner)

1. Prove

$$
\frac{\partial \rho}{\partial t}+\operatorname{div} \mathbf{j}=0
$$

where

$$
\mathbf{j}=-\frac{i \hbar}{2 m}\left[\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right]
$$

using the standard non-relativistic Schrödinger equation.
2. (a) The Lagrange density for a real scalar field is given by

$$
\mathcal{L}_{0}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2} .
$$

Show that the Hamiltonian H_{0} is given by

$$
H_{0}=\frac{1}{2} \int\left(\dot{\phi}^{2}+(\nabla \phi)^{2}+m^{2} \phi^{2}\right) \mathrm{d}^{3} x .
$$

(b) The canonical commutation relations are given by

$$
\begin{array}{rcc}
{\left[\phi(\mathbf{x}, t), \pi\left(\mathbf{x}^{\prime}, t\right)\right]} & = & i \hbar \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
{\left[\phi(\mathbf{x}, t), \phi\left(\mathbf{x}^{\prime}, t\right)\right]} & = & 0 \\
{\left[\pi(\mathbf{x}, t), \pi\left(\mathbf{x}^{\prime}, t\right)\right]=} & 0
\end{array}
$$

Show that with these commutation relations the (Heisenberg) equations of motion for the time evolution of the operators ϕ and π,

$$
i \hbar \dot{\phi}=\left[\phi, H_{0}\right] \quad \text { and } \quad i \hbar \dot{\pi}=\left[\pi, H_{0}\right]
$$

imply the Klein-Gordon equation for the field ϕ.
(c) Now consider the Lagrange density

$$
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{I},
$$

with the interaction Lagrangian

$$
\mathcal{L}_{I}=-\frac{\lambda_{3}}{3!} \phi^{3}-\frac{\lambda_{4}}{4!} \phi^{4}
$$

Derive the equation of motion from the general form of the Euler-Lagrange equations

$$
\partial^{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \phi\right)}\right]-\frac{\partial \mathcal{L}}{\partial \phi}=0
$$

3. Creation and annihilation operators:
(a) Two-particle states are defined by $\left|\mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=a^{\dagger}\left(\mathbf{p}_{1}\right) a^{\dagger}\left(\mathbf{p}_{2}\right)|0\rangle$. Show that

$$
\left\langle\mathbf{p}_{1}^{\prime}, \mathbf{p}_{2}^{\prime} \mid \mathbf{p}_{1}, \mathbf{p}_{2}\right\rangle=(2 \pi)^{6}\left(2 p_{1}^{0}\right)\left(2 p_{2}^{0}\right)\left[\delta\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \delta\left(\mathbf{p}_{2}-\mathbf{p}_{2}^{\prime}\right)+\delta\left(\mathbf{p}_{1}-\mathbf{p}_{2}^{\prime}\right) \delta\left(\mathbf{p}_{2}-\mathbf{p}_{1}^{\prime}\right)\right] .
$$

(b) Show that the number operator, defined by

$$
N:=\frac{1}{(2 \pi)^{3}} \int \frac{\mathrm{~d}^{3} \mathbf{p}}{2 p^{0}} a^{\dagger}(\mathbf{p}) a(\mathbf{p})
$$

satisfies

$$
\left[N, a^{\dagger}(\mathbf{p})\right]=a^{\dagger}(\mathbf{p}),
$$

and hence

$$
N\left|\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right\rangle=n\left|\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right\rangle
$$

