Homework Sheet 1

MATH431 - Introduction to Modern Particle Theory

(Dr Thomas Teubner)

1. Write down the Lagrangian for a particle of mass m in a potential $V(r, \phi)$ when referred to planar polar coordinates (r, ϕ). Show that the equations of motion are

$$
m \ddot{r}-m r \dot{\phi}^{2}=-\frac{\partial V}{\partial r} \quad \text { and } \quad m r \ddot{\phi}+2 m \dot{r} \dot{\phi}=-\frac{1}{r} \frac{\partial V}{\partial \phi} .
$$

Derive the conservation of angular momentum in the plane and obtain the usual formula v^{2} / r for centripetal acceleration.
2. (a) Show that if the Hamiltonian is independent of a generalised coordinate q_{0}, then the conjugate momentum p_{0} is a constant ot the motion. Such coordinates are called cyclic coordinates. Give two examples of physical systems which have a cyclic coordinate.
(b) Show that in 3 dimensional spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential $V(\vec{x})$ is

$$
H=\frac{1}{2 m}\left(p_{r}^{2}+\frac{p_{\theta}^{2}}{r^{2}}+\frac{p_{\phi}^{2}}{r^{2} \sin ^{2} \theta}\right)+V(\vec{x}) .
$$

Now show that $p_{\phi}=$ constant if $\partial V / \partial \phi \equiv 0$ and give a physical interpretation of this result.
3. The potential function of a two-dimensional harmonic oscillator is

$$
V(x, y)=\frac{1}{2} k\left(x^{2}+y^{2}\right) .
$$

(a) Write down the Lagrangian of this system.
(b) Write down the Euler-Lagrange equations of motion.
(c) Write down the Hamiltonian.
(d) Write down the Lagrangian and Hamiltonian in polar coordinates (r, ϕ) with ($x=$ $r \cos \phi, y=r \sin \phi)$.
(e) How many constants of the motion are there?

What are they?

