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1. Supersymmetry dependences (tanf)
2. Higgs Exempt No-Scale Supersymmetry

3. Importance of a good measurement of g-2



Supersymmetry Predictions

If all superpartners have the same mass, the
SUSY prediction for a,, is

oy 100 GeV \ 2 |
5(1‘?("” = l4tan : - x 1071
: Msirsy

Where tanf is ratio of vacuum expectation
values of the two Higgs doublets of the MSSM:

tanp = <H_ >/<H>



Chiral Flip brings tanf




Large tanf} theories

Large values of tanf3 generically required for SUSY
to have an effect on g-2.

What theories of Supersymmetry like or require
large values of tanf3?

1. No-scale Supersymmetry

2. Yukawa Unified Supersymmetry

We shall consider viable versions of these theories, and
ask if “large” g-2 contributions are allowed.



SUSY breaking resides in <F> of chiral multiplet
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Challenges for Low-Energy
SUSY

Throw a dart into Minimal SUSY parameter space,
And what do you get?

Observable predictions would be wildly
Incompatible with experiment.

Briefly review these challenges ....



Flavor Changing Neutral
Currents

Random superpartner masses and mixing angles
would generate FCNC far beyond what is measured:

Flavor angle f/t s

However: heavy or universal scalars would squash these FCNCs



Higgs boson mass

In minimal supersymmetry the lightest Higgs mass 1s com-
putable:
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Tree-level value is bounded by my; = 91 GeV. Current lower
limit on Higgs boson mass is 114 GeV. Thus, we need ~
(70 GeV)? contribution from quantum correction.

Need m; 2 5TeV (0.8 TeV) for tan 3 = 2(30)

Large tanf} especially needed if scalar masses small



Higgs-exempt No Scale

Goal is to increase the m,, (gaugino masses) which
then can increase scalar superpartner masses via RGE
flow, and can increase Higgs mass.

FCNC under control if slepton,squarks mass = 0

Pure no-scale minimal susy does not work.
Exempt the Higgs bosons from no-scale constraint.



What’s wrong with no-scale supersymmetry?
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Relevant Equations

The scalar RGE equations with non-universal soft masses:
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This induces a potentially significant shift in masses:
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Some numbers

Compare gaugino masses ...
A[l ~ (0—13) 3[1/2, 4\[2 ~ (083) All/Qa J[g ~ (26) Av[l/‘z

With slepton masses (negative S helps lift mg):
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LSP in Higgs-exempt No-Scale
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Scatter plot in the M, — tan 3 plane of solutions that respect the bounds of
Aa.f USY < 50 x 10~ and my;, > 114.4 GeV. Due to uncertainty in the top quark mass, and
the theoretical uncertainty in the computation of m;, a more conservative constraint on this
theoretically computed value of m,, is 110 GeV, which is also shown in the figure.



Tevatron 3l Signal
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3 leptons plus missing energy. After cuts, 0.49 fb background.
Marginal to find HENS scenario at Tevatron with 10 fb!



LHC 3l Signal
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H
3 leptons plus missing energy. After cuts, 0.1 fb background.
For this value of M, , it is promising at LHC with 10 fb-!
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Multi-lepton Signatures
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Superconservative g-2
Supersymmetry exclusions

The g-2 experiment is independent powerful probe
of supersymmetry.

Dark matter relic abundance, b—sy, Higgs mass,
etc. not necessarily correlated with SUSY g-2.

Assume:

‘Real SUSY parameters (M., u, etc.)

*|u|>M, (expected generically for much of pam. space)
*M,=0.5M, (gaugino unification at high scale)

|A|/m<3 to avoid charge-violating vacua

*Smuon mass greater than 95 GeV

Superconservative: -37 x 101° < g (susy) < 90 x 101° (5¢ allowed region)



Exclusion Plot for u<0
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Exclusion Plot for u>0
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Comments

Results could significantly enlighten collider analyses.
For example, tanp>30 and u<0, and chargino is found
below 360 GeV. Implication: no slepton state below
250 GeV. ILC-500 cannot find sleptons.

g-2 is an independent probe of susy, and meaningful
even if measurement turns out to be consistent with
SM. This is especially true of high tanf theories, such
as no-scale susy and b-t unification susy, etc.

A good measurement, no matter what the result, is
very constraining to supersymmetry.



