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Constrained MSSM ...e.g., mSUGRA

At MGUT ' 2 × 1016 GeV:

gauginos M1 = M2 = meg = m1/2 (c.f. MSSM)

scalars m2
eqi

= m2
eli

= m2
Hb

= m2
Ht

= m2
0

3–linear soft terms Ab = At = A0

radiative EWSB

µ2 =

“
m2

Hb
+Σ

(1)
b

”
−

“
m2

Ht
+Σ

(1)
t

”
tan2 β

tan2 β−1
− m2

Z

2

five independent parameters: tanβ, m1/2, m0, A0, sgn(µ)

mass spectra at mZ : run RGEs, 2–loop for g.c. and Y.c, 1-loop for
masses
some important quantities (µ,mA, . . .) very sensitive to procedure of

computing EWSB & minimizing VH
we use SoftSusy and FeynHiggs
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CMSSM: allowed regions
Roszkowski, Ruiz, Nihei (’02)

(somewhat outdated input, e.g., δaSUSY
µ = (43 ± 16) × 10−10)
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CMSSM: allowed regions
Roszkowski, Ruiz, Nihei (’02)

(somewhat outdated input, e.g., δaSUSY
µ = (43 ± 16) × 10−10)

fixed-grid scans, assuming rigid 1σ or 2σ exp’tal ranges
green: consistent with conservative Ωχh2

most points excluded by LEP, BR(B̄ → Xsγ), Ωχh2, EWSB, charged LSP,...
hard to compare relative impact of various constraints, include TH errors, etc.
proper way: employ statistical analysis
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MCMC + Bayesian Statistics
(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

Advantages

efficient, nr of scan points ∝ N

easy to deal with additional parameters

easy to deal with uncertainties (expt and theor)

‘allowed’ regions function of probability

Disadvantages

random scan of points (not strictly controlled)

Powerful method of exploring multi–parameter models;
allows one to make global statements, expose correlations, etc.
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Bayesian Analysis of the CMSSM
Apply to the CMSSM: new development, led by 2 groups

m = (θ, ψ): model’s all relevant parameters
θ: CMSSM parameters m1/2, m0, A0, tanβ

ψ: relevant SM parameters ⇒ nuisance parameters
ξ = (ξ1, ξ2, . . . , ξm): set of derived variables (observables) ξ(m)

d: data

Bayes’ theorem: posterior pdf

p(θ, ψ|d) = p(d|ξ)π(θ,ψ)
p(d)

posterior = likelihood × prior

normalization factor

p(d|ξ): likelihood
π(θ, ψ): prior pdf
p(d): evidence (normalization factor)
usually marginalize over SM (nuisance) parameters ψ ⇒ p(θ|d)
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Bayesian Analysis of the CMSSM
θ = (m0,m1/2, A0, tanβ): CMSSM parameters

ψ = (Mt,mb(mb)
MS , αem(MZ)MS , αMS

s ): SM (nuisance) parameters
priors – assume flat distributions and ranges as:

CMSSM parameters θ
50 GeV < m0 < 4 TeV

50 GeV < m1/2 < 4 TeV
|A0| < 7 TeV

2 < tanβ < 62

flat priors: SM (nuisance) parameters ψ
160 GeV < Mt < 190 GeV

4 GeV < mb(mb)
MS < 5 GeV

0.10 < αMS
s < 0.13

127.5 < 1/αem(MZ)MS < 128.5

vary all 8 (CMSSM+SM) parameters simultaneously, apply MCMC
include all relevant theoretical and experimental errors
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Experimental Measurements
(assume Gaussian distributions)

SM (nuisance) parameter Mean Error
µ σ (expt)

Mt 171.4 GeV 2.1 GeV
mb(mb)

MS 4.20 GeV 0.07 GeV
αs 0.1176 0.002
1/αem(MZ) 127.918 0.018

new MW = 80.413 ± 0.048 GeV
(Jan 07, not yet included)
new Mt = 170.9 ± 1.8 GeV
(Mar 07, not yet included)
BR(B̄ → Xsγ) × 104:
new SM: 3.15 ± 0.23 (Misiak &
Steinhauser, Sept 06) used here

Derived observable Mean Errors
µ σ (expt) τ (th)

MW 80.392 GeV 29 MeV 15 MeV
sin2 θ

eff
0.23153 16 × 10−5 15 × 10−5

δaSUSY
µ × 1010 28 8.1 1

BR(B̄ → Xsγ) × 104 3.55 0.26 0.21

∆MBs
17.33 0.12 4.8

Ωχh2 0.119 0.009 0.1 Ωχh2

take as precisely known: MZ = 91.1876(21) GeV, GF = 1.16637(1) × 10−5 GeV−2
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Experimental Limits
Derived observable upper/lower Constraints

limit ξlim τ (theor.)
BR(Bs → µ+µ−) UL 1.5 × 10−7 14%
mh LL 114.4 GeV (91.0 GeV) 3 GeV
ζ2h ≡ g2ZZh/g

2
ZZHSM

UL f(mh) 3%
mχ LL 50 GeV 5%
m
χ

±
1

LL 103.5 GeV (92.4 GeV) 5%

mẽR
LL 100 GeV (73 GeV) 5%

mµ̃R
LL 95 GeV (73 GeV) 5%

mτ̃1 LL 87 GeV (73 GeV) 5%
mν̃ LL 94 GeV (43 GeV) 5%
mt̃1

LL 95 GeV (65 GeV) 5%
mb̃1

LL 95 GeV (59 GeV) 5%
mq̃ LL 318 GeV 5%
mg̃ LL 233 GeV 5%
(σSIp UL WIMP mass dependent ∼ 100%)

Note: DM direct detection σSIp not applied due to astroph’l uncertainties (eg, local DM density)
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The Likelihood: 1-dim case
Take a single observable ξ(m) that has been measured

(e.g., MW )

c – central value, σ – standard exptal error
define

χ2 = [ξ(m)−c]2
σ2

assuming Gaussian distribution (d → (c, σ)):

L = p(σ, c|ξ(m)) = 1√
2πσ

exp
[

−χ2

2

]

when include theoretical error estimate τ (assumed Gaussian):

σ → s =
√
σ2 + τ2

TH error “smears out” the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

L = exp
[

− ∑

i
χ2

i

2

]
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Probability maps of the CMSSM
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not so good: MW , sin2 θeff , BR(B̄ → Xsγ) (for µ > 0!)
bad: δaSUSY

µ (for both signs of µ!)
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Impact of new SM b → sγ
recall

BR(B → Xsγ) = B(W−/t) + B(H−/t) − sgn(µ)B(χ−/et )
SM: full NLO + NNLO of mc (from M. Misiak);

SUSY: dominant NLO terms ∝ tanβ, log (MS/mW )

NEW: BR(B → Xsγ) × 104

EXPT: 3.55 ± 0.26, SM: 3.11 ± 0.21

(with our inputs), (May 07)
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Tension between δaSUSY
µ and b → sγ?

δaSUSY
µ : D. Stockinger (’07)
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very sensitive to it
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b → sγ and GFM
GFM: general flavor mixing
MFV: minimal flavor violation

include dominant NLO–level
contributions

enhanced at large tanβ
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Dark matter detection: σSIp

MCMC+Bayesian analysis
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Dark matter vs. δaSUSY
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Summary

MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim.
“new physics” models, a well-defined, statistical measure,
allows for proper comparison of various constraints
‘global’ scans lead to ‘global’ results
CMSSM with new SM value for BR(B → Xsγ):

δaSUSY
µ close to zero

(for both signs of µ)

trouble for the Constrained MSSM (and the likes)? or for SM prediction for (g − 2)µ?

Implications:
bad news for LHC: heavy scalars (but eg within reach)
consider splitting common squark and slepton masses
consider non-minimal flavor mixing
...

DM: Ωχh2 and DD c.s. not correlated with δaSUSY
µ

improved error on (g − 2)
expt
µ − (g − 2)SM

µ will be most helpful in guiding model
building

L. Roszkowski, Is the CMSSM already ruled out? – p.18
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Backup...
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