Is the CMSSM already ruled out? ...by $(g-2)_{\mu}$...

Leszek Roszkowski

Astro–Particle Theory and Cosmology Group Sheffield, England

with R. Ruiz de Austri and R. Trotta hep-ph/0602028 \rightarrow JHEP06, hep-ph/0611173 \rightarrow JHEP07 and arXiv:0705.2012 \rightarrow JHEP07

the Constrained MSSM (CMSSM)

- the Constrained MSSM (CMSSM)
- Imitations of fixed-grid scans

- the Constrained MSSM (CMSSM)
- Imitations of fixed-grid scans
- MCMC + Bayesian statistics

- the Constrained MSSM (CMSSM)
- Iimitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM

- the Constrained MSSM (CMSSM)
- Imitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM
- fits of observables

- the Constrained MSSM (CMSSM)
- Imitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM
- fits of observables
- Impact of a recent SM result for $b
 ightarrow s \gamma$

- the Constrained MSSM (CMSSM)
- Imitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM
- fits of observables
- Impact of a recent SM result for $b o s\gamma$
- ${}^{\hspace{-.1cm}{
 m 0}}$ $b
 ightarrow s\gamma$ VS. $\delta a_{\mu}^{
 m SUSY}$

- the Constrained MSSM (CMSSM)
- Iimitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM
- fits of observables
- Impact of a recent SM result for $b o s\gamma$
- ${}^{\hspace{-.1cm}{
 m l}}$ $b
 ightarrow s\gamma$ VS. $\delta a_{\mu}^{
 m SUSY}$
- J dark matter and δa_{μ}^{SUSY}

- the Constrained MSSM (CMSSM)
- Iimitations of fixed-grid scans
- MCMC + Bayesian statistics
- Bayesian Analysis of the CMSSM
- fits of observables
- Impact of a recent SM result for $b o s\gamma$
- ${}^{\hspace{-.1cm}{
 m 0}}$ $b
 ightarrow s\gamma$ VS. $\delta a_{\mu}^{
 m SUSY}$
- Joint Matter and δa_{μ}^{SUSY}
- summary

Constrained MSSM ...e.g., mSUGRA

At $M_{\rm GUT} \simeq 2 imes 10^{16}$ GeV:

- ${}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$ (c.f. MSSM)
- ${\scriptstyle
 ightarrow}$ scalars $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 9 3–linear soft terms $A_b = A_t = A_0$

...e.g., mSUGRA

At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$:

- ${}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$ (c.f. MSSM)
- ${} {oldsymbol{\square}}$ scalars $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 9 3-linear soft terms $A_b = A_t = A_0$

radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

...e.g., mSUGRA

At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$:

- ${}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$ (c.f. MSSM)
- ${oldsymbol{\square}}$ scalars $m^2_{\widetilde{q}_i}=m^2_{\widetilde{l}_i}=m^2_{H_b}=m^2_{H_t}=m^2_0$
- 3-linear soft terms $A_b = A_t = A_0$

...e.g., mSUGRA

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

• five independent parameters: $\tan\beta, m_{1/2}, m_0, A_0, \operatorname{sgn}(\mu)$

At $M_{ m GUT}\simeq 2 imes 10^{16}\, m GeV$:

- ${}$ gauginos $M_1=M_2=m_{\widetilde{g}}=m_{1/2}$ (c.f. MSSM)
- ${oldsymbol{\square}}$ scalars $m_{\widetilde{q}_i}^2=m_{\widetilde{l}_i}^2=m_{H_b}^2=m_{H_t}^2=m_0^2$
- 3-linear soft terms $A_b = A_t = A_0$

...e.g., mSUGRA

radiative EWSB

$$\mu^2 = rac{\left(m_{H_b}^2 + \Sigma_b^{(1)}
ight) - \left(m_{H_t}^2 + \Sigma_t^{(1)}
ight) an^2eta}{ an^2eta - 1} - rac{m_Z^2}{2}$$

- five independent parameters: $\tan\beta, m_{1/2}, m_0, A_0, \operatorname{sgn}(\mu)$
- mass spectra at m_Z : run RGEs, 2–loop for g.c. and Y.c, 1-loop for masses
- some important quantities (μ, m_A, \ldots) very sensitive to procedure of computing EWSB & minimizing V_H

we use SoftSusy and FeynHiggs

L. Roszkowski, Is the CMSSM already ruled out? - p.3

Roszkowski, Ruiz, Nihei ('02) (somewhat outdated input, *e.g.*, $\delta a_{\mu}^{
m SUSY} = (43 \pm 16) imes 10^{-10})$

Roszkowski, Ruiz, Nihei ('02) (somewhat outdated input, *e.g.*, $\delta a_{\mu}^{
m SUSY} = (43 \pm 16) imes 10^{-10})$

- fixed-grid scans, assuming rigid 1σ or 2σ exp'tal ranges
- **9** green: consistent with conservative $\Omega_{\chi} h^2$
- **9** most points excluded by LEP, $\mathrm{BR}(ar{B} o X_s \gamma)$, $\Omega_{\chi} h^2$, EWSB, charged LSP,...
- hard to compare relative impact of various constraints, include TH errors, etc.
- proper way: employ statistical analysis

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

Advantages

efficient, nr of scan points $\propto N$

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

Advantages

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

Disadvantages

random scan of points (not strictly controlled)

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

Advantages

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

Disadvantages

random scan of points (not strictly controlled)

Powerful method of exploring multi-parameter models;

(MCMC=Markov Chain Monte Carlo)

Improve: a probabilistic approach

Advantages

- \checkmark efficient, nr of scan points $\propto N$
- easy to deal with additional parameters
- easy to deal with uncertainties (expt and theor)
- 'allowed' regions function of probability

Disadvantages

random scan of points (not strictly controlled)

Powerful method of exploring multi–parameter models; allows one to make global statements, expose correlations, etc.

Apply to the CMSSM:

Apply to the CMSSM:

new development, led by 2 groups

 $m = (\theta, \psi)$: model's all relevant parameters

Apply to the CMSSM:

- $m = (\theta, \psi)$: model's all relevant parameters
- **9** θ : CMSSM parameters $m_{1/2}, m_0, A_0, \tan \beta$
- \checkmark ψ : relevant SM parameters \Rightarrow nuisance parameters

Apply to the CMSSM:

- $m = (\theta, \psi)$: model's all relevant parameters
- **9** θ : CMSSM parameters $m_{1/2}, m_0, A_0, \tan \beta$
- ψ : relevant SM parameters \Rightarrow nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables) $\xi(m)$

Apply to the CMSSM:

- $m = (\theta, \psi)$: model's all relevant parameters
- **9** θ : CMSSM parameters $m_{1/2}, m_0, A_0, \tan \beta$
- ψ : relevant SM parameters \Rightarrow nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables) $\xi(m)$
- d: data

Apply to the CMSSM:

new development, led by 2 groups

Probability density

posterior =

prior

- $m = (\theta, \psi)$: model's all relevant parameters
- **9** θ : CMSSM parameters $m_{1/2}, m_0, A_0, \tan \beta$
- ψ : relevant SM parameters \Rightarrow nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables) $\xi(m)$
- d: data
- Bayes' theorem: posterior pdf

$$p(heta,\psi|d) = rac{p(d|m{\xi})\pi(heta,\psi)}{p(d)}$$

- $p(d|\xi)$: likelihood
- $\pi(\theta,\psi)$: prior pdf
- p(d): evidence (normalization factor)

 $\frac{\text{likelihood} \times \text{prior}}{\text{normalization factor}}$

posterior

likelihood

θ

Apply to the CMSSM:

new development, led by 2 groups

Probability density

prior

 $posterior = \frac{likelihood \times prior}{normalization factor}$

- $m = (\theta, \psi)$: model's all relevant parameters
- **9** θ : CMSSM parameters $m_{1/2}, m_0, A_0, \tan \beta$
- ψ : relevant SM parameters \Rightarrow nuisance parameters
- $\xi = (\xi_1, \xi_2, \dots, \xi_m)$: set of derived variables (observables) $\xi(m)$
- d: data
- Bayes' theorem: posterior pdf

$$p(heta,\psi|d) = rac{p(d|m{\xi})\pi(heta,\psi)}{p(d)}$$

- $p(d|\xi)$: likelihood
- $\pi(heta,\psi)$: prior pdf
- **9** p(d): evidence (normalization factor)
- usually marginalize over SM (nuisance) parameters $\psi \Rightarrow p(\theta|d)$

posterior

likelihood

θ
Bayesian Analysis of the CMSSM

- $\boldsymbol{\theta} = (m_0, m_{1/2}, A_0, \tan \beta)$: CMSSM parameters
- priors assume flat distributions and ranges as:

vary all 8 (CMSSM+SM) parameters simultaneously, apply MCMC

include all relevant theoretical and experimental errors

Experimental Measurements

(assume Gaussian distributions)

Experimental Measurements

(assume Gaussian distributions)

SM (nuisance) parameter	Mean	Mean Error	
	$oldsymbol{\mu}$	$oldsymbol{\sigma}$ (expt)	
M_t	171.4 GeV	2.1 GeV	
$(m_b(m_b)^{\overline{MS}})$	4.20 GeV	0.07 GeV	
$lpha_s$	0.1176	0.002	
$1/lpha_{ m em}(M_Z)$	127.918	0.018	

Experimental Measurements

(assume Gaussian distributions)

SM (nuisance) parameter	Mean	Error	new $M_W=80.413\pm0.048{ m GeV}$
	μ	$oldsymbol{\sigma}$ (expt)	(Jan 07, not yet included)
M+	171 4 GeV	2 1 GeV	new $M_t = 170.9 \pm 1.8 ext{GeV}$
		2.1 0.0 1	(Mar 07, not yet included)
$m_b(m_b)^{\scriptscriptstyle NIS}$	4.20 GeV	0.07 GeV	${ m BR}(ar{ m B} ightarrow { m X_s} \gamma) imes 10^4$:
$lpha_s$	0.1176	0.002	new SM: 3.15 ± 0.23 (Misiak &
$1/lpha_{ m em}(M_Z)$	127.918	0.018	Steinhauser, Sept 06) used here

Derived observable	Mean	Errors	
	μ	$oldsymbol{\sigma}$ (expt)	$oldsymbol{ au}$ (th)
M_W	80.392 GeV	29 MeV	15 MeV
$\sin^2 heta_{ m eff}$	0.23153	$16 imes 10^{-5}$	$15 imes 10^{-5}$
$\delta a_{\mu}^{ m SUSY} imes 10^{10}$	28	8.1	1
${ m BR}(ar{ m B} ightarrow { m X_s} \gamma) imes 10^4$	3.55	0.26	0.21
ΔM_{B_s}	17.33	0.12	4.8
$\Omega_\chi h^2$	0.119	0.009	$0.1\Omega_\chi h^2$

take as precisely known: $M_Z=91.1876(21)~{
m GeV}, G_F=1.16637(1) imes10^{-5}~{
m GeV}^{-2}$

Experimental Limits

Derived observable	upper/lower	Constraints	
	limit	ξlim	$oldsymbol{ au}$ (theor.)
$BR(B_s \to \mu^+ \mu^-)$	UL	$1.5 imes10^{-7}$	14%
m_h	LL	114.4 GeV (91.0 GeV)	3 GeV
$\zeta_h^2 \equiv g_{ZZh}^2/g_{ZZH_{ m SM}}^2$	UL	$f(m_h)$	3%
m_{χ}	LL	50 GeV	5%
$m_{\chi_1^{\pm}}$	LL	$103.5{ m GeV}~(92.4{ m GeV})$	5%
$m_{\tilde{e}_R}$	LL	100 GeV (73 GeV)	5%
$m_{ ilde{\mu}_R}$	LL	95 GeV (73 GeV)	5%
$m_{ ilde{ au}_1}$	LL	87 GeV (73 GeV)	5%
$m_{ ilde{ u}}$	LL	94 GeV (43 GeV)	5%
$m_{ ilde{t}_1}$	LL	95 GeV (65 GeV)	5%
$m_{ ilde{b}_1}$	LL	95 GeV (59 GeV)	5%
$m_{\widetilde{q}}$	LL	318 GeV	5%
$m_{\widetilde{g}}$	LL	233 GeV	5%
(σ_p^{SI})	UL	WIMP mass dependent	$\sim 100\%$)

Note: DM direct detection σ_p^{SI} not applied due to astroph'l uncertainties (eg, local DM density)

Take a single observable $\xi(m)$ that has been measured

Take a single observable $\xi(m)$ that has been measured

c – central value, σ – standard exptal error

 $(\text{e.g.},\,M_W)$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

■ assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = \frac{[\xi(m) - c]^2}{\sigma^2}$$

assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

when include theoretical error estimate τ (assumed Gaussian):

$$\sigma \to s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

assuming Gaussian distribution $(d \rightarrow (c, \sigma))$:

$$\mathcal{L} = p(\sigma, c | \xi(m)) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{\chi^2}{2}\right]$$

when include theoretical error estimate τ (assumed Gaussian):

$$\sigma
ightarrow s = \sqrt{\sigma^2 + \tau^2}$$

TH error "smears out" the EXPTAL range

for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_{i}rac{\chi_{i}^{2}}{2}
ight]$$

arXiv:0705.2012

- MCMC scan
 Revesion analysis
- Bayesian analysis
- relative probability density fn
- flat priors
- 68% total prob. inner contours
- 95% total prob. outer contours
- 2-dim pdf $p(m_0, m_{1/2}|d)$
- favored: $m_0 \gg m_{1/2}$ (FP region)

arXiv:0705.2012

0.4

0.6

0.8

similar study by Allanach+Lester(+Weber) (but no mean qof), see also, Ellis et al (EHOW, χ^2 approach, no MCMC, fixed SM parameters)

arXiv:0705.2012

unlike others (except for A+L), we vary also SM parameters

Fits of Observables

Fits of Observables

Fits of Observables

- ${} { \hspace{-.1cm} { \hspace{-.1cm} \hspace{-.1cm} } \hspace{-.1cm} } { \hspace{-1cm} } { \hspace{-.1cm} } { } { \hspace{-1cm} } { { \hspace{$
- ${}$ not so good: M_W , $\sin^2 heta_{
 m eff}$, ${
 m BR}(ar B o X_s\gamma)$ (for $\mu>0$!)
- **b** bad: δa_{μ}^{SUSY} (for both signs of μ !)

Impact of new SM $b \rightarrow s\gamma$

recall

 $BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\tilde{t})$

SM: full NLO + NNLO of m_c (from M. Misiak); SUSY: dominant NLO terms $\propto \tan \beta$, log (M_S/m_W)

Impact of new SM $b \rightarrow s\gamma$

recall

$BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\tilde{t})$

SM: full NLO + NNLO of m_c (from M. Misiak); SUSY: dominant NLO terms $\propto \tan \beta$, log (M_S/m_W)

NEW: $BR(B \rightarrow X_s \gamma) \times 10^4$ EXPT: 3.55 \pm 0.26, SM: 3.11 \pm 0.21 (with our inputs), (May 07)

Impact of new SM $b \rightarrow s\gamma$

recall

$BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\tilde{t})$

SM: full NLO + NNLO of m_c (from M. Misiak); SUSY: dominant NLO terms $\propto \tan \beta$, log (M_S/m_W) OLD: $BR(B \rightarrow X_s \gamma) \times 10^4$ NEW: $BR(B \rightarrow X_s \gamma) \times 10^4$ EXPT: 3.55 ± 0.26 , SM: 3.11 ± 0.21 EXPT: 3.39 ± 0.68 , SM: 3.70 ± 0.30 (with our inputs), (May 07) (Feb 2006) Roszkowski, Ruiz & Trotta (2007) Ruiz, Trotta & Roszkowski (2006) 3.5 3.5 m₀ (TeV) 2.5 m₀ (TeV) 2.5 0 0.5 CMSSM 0.5 μ>0 1.5 0.5 2 0.5 m¹_{1/2} (TeV) 2 m_{1/2} (TeV)

 \Rightarrow big shift towards large m_0 (focus point region!)

Tension between $\delta a^{ m SUSY}_{\mu}$ and $b ightarrow s\gamma?$

Tension between $\delta a_{\mu}^{ m SUSY}$ and $b ightarrow s\gamma?$

 $\frac{\delta a_{\mu}^{\rm SUSY}}{\delta a_{\mu}^{\rm SUSY}} \simeq 13 \times 10^{-10} \left(\frac{100 \,\text{GeV}}{\widetilde{m}_{\rm EW}}\right)^2 \tan\beta \,\text{sgn}(\mu) \text{ D. Stockinger ('07)}$

 $\widetilde{m}_{\mathrm{EW}}$ - average EW spartner mass, LO approx'n

 \Rightarrow need fairly light $\tilde{
u}_{\mu}$ and χ^{\pm} , and/or $\tilde{\mu}$ and χ^{0} (and $\mu > 0$)

Tension between $\delta a_{\mu}^{ m SUSY}$ and $b ightarrow s\gamma?$

 $\delta a_{\mu}^{\mathrm{SUSY}} \simeq 13 \times 10^{-10} \left(\frac{100 \,\mathrm{GeV}}{\widetilde{m}_{\mathrm{EW}}} \right)^2 \tan \beta \,\mathrm{sgn}(\mu)$ D. Stockinger ('07)

 $\widetilde{m}_{\mathrm{EW}}$ - average EW spartner mass, LO approx'n

 \Rightarrow need fairly light $ilde{
u}_{\mu}$ and χ^{\pm} , and/or $ilde{\mu}$ and χ^{0} (and $\mu>0$)

 $\delta a_{\mu}^{\rm SUSY}$:

- $\delta a_{\mu}^{
 m SUSY}$ favors low m_0 and $m_{1/2}$
- **b** and large aneta

Tension between $\delta a_{\mu}^{\rm SUSY}$ and $b \rightarrow s\gamma$?

D. Stockinger ('07) $\delta a_{\mu}^{\rm SUSY} \simeq 13 \times 10^{-10} \left(\frac{100 \,{\rm GeV}}{\widetilde{m}_{\rm FW}} \right)^2 \tan \beta \, {
m sgn}(\mu)$

 $\widetilde{m}_{\rm EW}$ - average EW spartner mass, LO approx'n

 \Rightarrow need fairly light $\tilde{\nu}_{\mu}$ and χ^{\pm} , and/or $\tilde{\mu}$ and χ^{0} (and $\mu > 0$)

1.5

 δa_{μ}^{SUSY} :

- $\delta a_{u}^{
 m SUSY}$ favors low m_{0} and $m_{1/2}$
- and large $\tan \beta$

 $b \rightarrow s \gamma$:

 $BR(B
ightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\widetilde{t}) \propto \tan eta$ $BR(B \rightarrow X_s \gamma) \times 10^4$, EXPT: 3.55 \pm 0.26, SM: 3.11 \pm 0.21

Tension between $\delta a_{\mu}^{ m SUSY}$ and $b ightarrow s\gamma?$

 $\delta a_{\mu}^{SUSY} \simeq 13 \times 10^{-10} \left(\frac{100 \,\text{GeV}}{\widetilde{m}_{EW}}\right)^2 \tan\beta \,\text{sgn}(\mu)$ D. Stockinger ('07)

 $\widetilde{m}_{\mathrm{EW}}$ - average EW spartner mass, LO approx'n

 \Rightarrow need fairly light $ilde{
u}_{\mu}$ and χ^{\pm} , and/or $ilde{\mu}$ and χ^{0} (and $\mu>0$)

- $\delta a_{\mu}^{
 m SUSY}$ favors low m_0 and $m_{1/2}$
- lacksquare and large aneta

 $b
ightarrow s \gamma$:

 $\delta a_{\mu}^{\mathrm{SUSY}}$:

 $BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\tilde{t}) \propto \tan \beta$ $BR(B \rightarrow X_s \gamma) \times 10^4$, EXPT: 3.55 \pm 0.26, SM: 3.11 \pm 0.21

new SM $b \rightarrow s \gamma$ favors large m_0

Tension between $\delta a_{\mu}^{ m SUSY}$ and $b ightarrow s\gamma?$

 $\delta a_{\mu}^{\rm SUSY} \simeq 13 \times 10^{-10} \left(\frac{100 \,{\rm GeV}}{\widetilde{m}_{\rm EW}}\right)^2 \tan\beta \,{
m sgn}(\mu)$ D. Stockinger ('07)

 $\widetilde{m}_{\mathrm{EW}}$ - average EW spartner mass, LO approx'n

 \Rightarrow need fairly light $ilde{
u}_{\mu}$ and χ^{\pm} , and/or $ilde{\mu}$ and χ^{0} (and $\mu>0$)

- $\delta a_{\mu}^{
 m SUSY}$ favors low m_0 and $m_{1/2}$
- lacksquare and large aneta

 $b
ightarrow s \gamma$:

 $\delta a_{\mu}^{\rm SUSY}$:

 $BR(B \rightarrow X_s \gamma) = B(W^-/t) + B(H^-/t) - \operatorname{sgn}(\mu) B(\chi^-/\tilde{t}) \propto \tan \beta$ $BR(B \rightarrow X_s \gamma) \times 10^4$, EXPT: 3.55 \pm 0.26, SM: 3.11 \pm 0.21

- new SM $b \rightarrow s \gamma$ favors large m_0
- lacksquare and large aneta

- \blacksquare \Rightarrow split slepton and squark soft masses, and/or
- $\Rightarrow \text{ invoke non-minimal flavor violation (at least in the squark sector): } b \rightarrow s\gamma \text{ can be}$ very sensitive to itL. Roszkowski, Is the CMSSM already ruled out? p.14

$b \rightarrow s\gamma$ and GFM

GFM: general flavor mixing MFV: minimal flavor violation

Okumura+Roszkowski, PRĽ04

bounds highly unstable against small perturbations of MFV

Dark matter detection: σ_p^{SI}

Dark matter detection: σ_p^{SI}

MCMC+Bayesian analysis

Dark matter detection: σ_p^{SI}

MCMC+Bayesian analysis

compare: fixed grid scan

Dark matter vs. $\delta a_{\mu}^{\rm SUSY}$

Dark matter vs. $\delta a_{\mu}^{\rm SUSY}$

Dark matter vs. $\delta a_{\mu}^{\rm SUSY}$

 \bullet \Rightarrow not much correlation

Summary

MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- **Solution** CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- **Solution** CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

(for both signs of μ)

trouble for the Constrained MSSM (and the likes)? or for SM prediction for $(g-2)_{\mu}$?

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- **Solution** CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

- It trouble for the Constrained MSSM (and the likes)? or for SM prediction for $(g-2)_{\mu}$?
- Implications:
 - **bad news for LHC: heavy scalars (but** \tilde{g} within reach)
 - consider splitting common squark and slepton masses
 - consider non-minimal flavor mixing
 - **_** ...

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- **Solution** CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

- trouble for the Constrained MSSM (and the likes)? or for SM prediction for $(g-2)_{\mu}$?
- Implications:
 - **bad news for LHC: heavy scalars (but** \tilde{g} within reach)
 - consider splitting common squark and slepton masses
 - consider non-minimal flavor mixing
 - **9** ...
- DM: $\Omega_{\chi} h^2$ and DD c.s. not correlated with $\delta a_{\mu}^{
 m SUSY}$

- MCMC + Bayesian statistics: a powerful tool for LHC era to properly analyze multi-dim. "new physics" models, a well-defined, statistical measure,
- allows for proper comparison of various constraints
- •global' scans lead to 'global' results
- CMSSM with new SM value for $BR(B \rightarrow X_s \gamma)$:

 $\delta a_{\mu}^{
m SUSY}$ close to zero

- It trouble for the Constrained MSSM (and the likes)? or for SM prediction for $(g-2)_{\mu}$?
- Implications:
 - bad news for LHC: heavy scalars (but \tilde{g} within reach)
 - consider splitting common squark and slepton masses
 - consider non-minimal flavor mixing
 - **_** ...
 - DM: $\Omega_{\chi}h^2$ and DD c.s. not correlated with $\delta a_{\mu}^{
 m SUSY}$
- Improved error on $(g-2)_{\mu}^{expt} (g-2)_{\mu}^{SM}$ will be most helpful in guiding model building

Backup...

$b ightarrow s\gamma$ vs. $\delta a_{\mu}^{ m SUSY}$

$b ightarrow s\gamma$ vs. $\delta a_{\mu}^{ m SUSY}$

 $b
ightarrow s\gamma$ vs. $\delta a_{\mu}^{
m SUSY}$

- \bullet \Rightarrow not much correlation
- $\mu > 0$: $BR(B \to X_s \gamma) \simeq$ SM-value
- $\mu < 0$: $BR(B \rightarrow X_s \gamma) \gtrsim$ SM-value