a_{μ} and its implications for physics beyond the SM, particularly in view of the questions of grand unification, origin of flavour and CP violation!

G.Ross, Glasgow, October 2007

 a_{μ} and its implications for physics beyond the SM, particularly in view of the questions of grand unification, origin of flavour and CP violation!

G.Ross, Glasgow, October 2007

Supersymmetry

- Extra dimensions
- Additional gauge bosons
- Additional (vectorlike) fermions
- Additional scalars
- Exotic flavour-changing interactions
- Nonperturbative effects
- Muon substructure
- Anomalous gauge boson couplings

• • • • •

 a_{μ} and its implications for physics beyond the SM, particularly in view of the questions of grand unification, origin of flavour and CP violation!

G.Ross, Glasgow, October 2007

- Supersymmetry Hierarchy problem, GUT
- Extra dimensions Hierarchy problem, GUT
- Additional gauge bosons L-R symmetry, Family group, ..?
- Additional (vectorlike) fermions Froggatt-Nielsen mass generation, string compact...
- Additional scalars L-R symmetry, Familons, little Higgs...
- Exotic flavour-changing interactions Family symmetries, technicolour...
- Nonperturbative effects Composite structure...
- Muon substructure \times ? $1.7TeV < \Lambda_{\mu} < 2.3TeV$ c.f. $\Lambda \ge 4 5TeV$
- Anomalous gauge boson couplings \times ?
- • • •

 $\frac{g^2}{8\pi^2} \frac{m_{\mu} M_F}{M_P^2} \left(1 - \frac{M_P^2}{M_S^2}\right)$

 $\frac{g^2}{16\pi^2} M_F \ln\left(\frac{M_S^2}{M_P^2}\right)$

$$C = \left(1 - \frac{M_P^2}{M_S^2}\right) / \ln \frac{M_S^2}{M_P^2}$$

 $C \leq O(1)$

In general

$$a_{\mu} = C \frac{m_{\mu}^2}{M^2}$$

Czarnecki, Marciano

Application to SUSY

$$\Delta a_{\mu} \propto g_{1,2}^2 m_{\mu}^2 \frac{m_{G_{1,2}} \mu_H}{\widetilde{M}^2} \tan \beta$$

$$\Delta m_{\mu} \propto g_{1,2}^2 m_{\mu} \frac{m_{G_{1,2}} \mu_H}{\widetilde{M}^2} \tan \beta$$

$$a_{\mu} = C \frac{m_{\mu}^2}{\widetilde{M}^2}$$

$$\Delta a_{\mu}$$
 large $\Rightarrow \Delta m_{\mu}$ large

Effect of Δm_{μ}^{SUSY} , Δm_{b}^{SUSY}

Parameters	Input SUSY Parameters					
$\tan \beta$	1.3	10	38	50	38	38
γ_b	0	0	0	0	-0.22	+0.22
γ_d	0	0	0	0	-0.21	+0.21
γ_t	0	0	0	0	0	-0.44
Parameters	Comparison with GUT Mass Ratios					
$(m_b/m_\tau)(M_X)$	$1.00^{+0.04}_{-0.4}$	0.73(3)	0.73(3)	0.73(4)	1.00(4)	1.00(4)
$(3m_{s}/m_{\mu})(M_{X})$	$0.70^{+0.8}_{-0.05}$	0.69(8)	0.69(8)	0.69(8)	0.9(1)	0.6(1)
$(m_d/3 m_e)(M_X)$	0.82(7)	0.83(7)	0.83(7)	0.83(7)	1.05(8)	0.68(6)
$\left(\frac{\det Y^d}{\det Y^{\epsilon}}\right)(M_X)$	$0.57^{+0.08}_{-0.26}$	0.42(7)	0.42(7)	0.42(7)	0.92(14)	0.39(7)

Serna, GGR

$$\begin{split} \gamma_t &\approx y_t^2 \,\mu \,A^t \, \frac{\tan\beta}{16\pi^2} I_3(m_{\tilde{t}_1}^2, m_{\tilde{t}_2}^2, \mu^2) &\sim y_t^2 \, \frac{\tan\beta}{32\pi^2} \frac{\mu \,A^t}{m_{\tilde{t}}^2} \\ \gamma_u &\approx -g_2^2 \,M_2 \,\mu \, \frac{\tan\beta}{16\pi^2} I_3(m_{\chi_1}^2, m_{\chi_2}^2, m_{\tilde{u}}^2) &\sim 0 \\ \gamma_b &\approx \frac{8}{3} \,g_3^2 \, \frac{\tan\beta}{16\pi^2} \,M_3 \,\mu \,I_3(m_{\tilde{b}_1}^2, m_{\tilde{b}_2}^2, M_3^2) &\sim \frac{4}{3} \,g_3^2 \, \frac{\tan\beta}{16\pi^2} \, \frac{\mu \,M_3}{m_{\tilde{b}}^2} \\ \gamma_d &\approx \frac{8}{3} g_3^2 \frac{\tan\beta}{16\pi^2} M_3 \,\mu \,I_3(m_{\tilde{d}_1}^2, m_{\tilde{d}_2}^2, M_3^2) &\sim \frac{4}{3} \,g_3^2 \, \frac{\tan\beta}{16\pi^2} \, \frac{\mu \,M_3}{m_{\tilde{d}}^2} \end{split}$$

$$\begin{split} \frac{\mu M_3}{m_{\tilde{b}}^2} &\sim -0.5, \quad \frac{m_{\tilde{b}}^2}{m_{\tilde{d}}^2} \sim 1.0\\ c.f. \quad \Delta a_\mu &\propto g_{1,2}^2 \, m_\mu^2 \frac{m_{G_{1,2}} \mu_H}{\widetilde{M}^2} \tan\beta \end{split}$$

$$\Rightarrow M_3 < 0, \ M_{1,2} > 0 ?$$

a_{μ} and Grand Unification

- GUT predictions for m improved
- $\widetilde{M}_{i=1,2,3}$ not universal?

a_{μ} and Grand Unification

- GUT predictions for m improved
- $\widetilde{M}_{i=1,2,3}$ not universal?

SPS 1

e.g. Anomaly mediation

RG invariant relations - fixed point

	$M_i = m_0 \beta_{g_i} / g_i$	$M_{3} < 0$
1	$h_{t,b,\tau} = -m_0 \beta_{Y_{t,b,\tau}}$	
n	$(m^2)^i_{\ j} = \frac{1}{2} m_0^2 \mu \frac{d}{d\mu} \gamma^i_{\ j}$	
	$m_3^2 = \kappa m_0 \mu - m_0 \beta_\mu$	
	a_{μ}^{SUSY} = 29.8	
	$\begin{array}{ccc} m_0 & 100 \; { m GeV} \\ m_{1/2} & 250 \; { m GeV} \end{array}$	
	$A_0 = -100 \text{GeV}$	

10

+

 $\tan \beta$

sign μ

a_{μ} and Grand Unification

- $\widetilde{M}_{i=1,2,3}$ not universal.
- Δa_{μ} large \Rightarrow sneutrino and charginos relatively light
- $\Delta(b \rightarrow s\gamma)$ small \Rightarrow heavy charged Higgs and heavy stop

$$\mathcal{BR}(b \to s\gamma)|_{\chi^{\pm}} \propto \mu A_t \tan \beta f(m_{\tilde{t}_1}, m_{\tilde{t}_2}, m_{\tilde{\chi}^+}) \frac{m_b}{v(1 + \Delta m_b)}$$

Serna, GGR Komine, Yamaguchi

Effect of CP

New SUSY sources of **C**P:
$$M_C = \begin{pmatrix} |\tilde{m}_2|e^{i\xi_2} & \sqrt{2}m_W \sin\beta \\ \\ \sqrt{2}m_W \cos\beta & |\mu|e^{i\theta_\mu} \end{pmatrix}$$

To suppress neutron, electron EDM, ξ_i , $\theta_\mu = O(10^{-2})$ unless there are cancellations

For large phases significant corrections to a_{μ}

(case) ξ_2, θ_μ, ξ_3 (radian)	$d_e, d_n \; (\text{ecm})$	a_{μ}^{SUSY}
(a)63,.3,.37	$-4.2 \times 10^{-27}, -5.3 \times 10^{-26}$	47.0×10^{-10}
(b)85 ,.4 ,.37	$4.2 \times 10^{-27}, 4.8 \times 10^{-26}$	10.8×10^{-10}
(c)8 ,.2 ,1.3	$4.0 \times 10^{-27}, 5.4 \times 10^{-26}$	12.2×10^{-10}
(d)32 ,.3 ,28	$-1.2 \times 10^{-27}, 3.3 \times 10^{-26}$	20.1×10^{-10}
(e)5 ,.49 ,5	$1.8 \times 10^{-27}, -6.6 \times 10^{-27}$	12.7×10^{-10}

Table 1: Cases where the EDM and the g-2 experiments are satisfied

Ibrahim, Chattopadhyay, Nath

Effect of CP

New SUSY sources of
$$\mathcal{OP}$$
: $M_C = \begin{pmatrix} |\tilde{m}_2|e^{i\xi_2} & \sqrt{2m_W}\sin\beta \\ \sqrt{2m_W}\cos\beta & |\mu|e^{i\theta_\mu} \end{pmatrix}$

To suppress neutron, electron EDM, ξ_i , $\theta_\mu = O(10^{-2})$ unless there are cancellations

For large phases significant corrections to a_{μ}

(case) ξ_2, θ_μ, ξ_3 (radian)	$d_e, d_n \; (\text{ecm})$	a_{μ}^{SUSY}
(a)63,.3,.37	$-4.2 \times 10^{-27}, -5.3 \times 10^{-26}$	47.0×10^{-10}
(b)85 ,.4 ,.37	$4.2 \times 10^{-27}, 4.8 \times 10^{-26}$	10.8×10^{-10}
(c)8 ,.2 ,1.3	$4.0 \times 10^{-27}, 5.4 \times 10^{-26}$	12.2×10^{-10}
(d)32 ,.3 ,28	$-1.2 \times 10^{-27}, 3.3 \times 10^{-26}$	20.1×10^{-10}
(e)5 ,.49 ,5	$1.8 \times 10^{-27}, -6.6 \times 10^{-27}$	12.7×10^{-10}

Table 1: Cases where the EDM and the g-2 experiments are satisfied

Ibrahim, Chattopadhyay, Nath

But spontaneously broken family symmetries can naturally explain why $\xi_i, \theta_\mu = O(10^{-2})$

Origin of flavour

$$\begin{pmatrix} m_e & 0 & 0 \\ 0 & m_\mu & 0 \\ 0 & 0 & m_\tau \end{pmatrix} \simeq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & m_\tau \end{pmatrix}$$

FAMILY SYMMETRY? Abelian, Non-Abelian $\subset (U(3))^6$

spontaneously broken:

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\langle \theta \rangle \neq 0} \begin{pmatrix} 0 & 0 & 0 \\ 0 & a \varepsilon^2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad a = O(1), \quad \varepsilon^2 = \frac{\langle \theta \rangle}{M}$$

Messenger sector (heavy fermions, heavy Higgs)

$$m_{ij} = \frac{\langle \theta \rangle \langle H \rangle}{M_X}$$

+family gauge group or familons

Froggatt, Nielsen

• Additional gauge bosons L-R symmetry, Family group, ..?

$$a_{\mu} = C \frac{m_{\mu}^2}{M^2} \qquad \qquad C \le O(1)$$

 $C \ll 1$ family diagonal couplings (m_{μ} small)

 $C \sim 1$ coupling to heavy fermions....M=1-2TeV

Strong correlation with FCNC

e.g. Z' with large $\tau - \mu$ mixing: $\Delta a_{\mu} = 221 \times 10^{-11} \Rightarrow BR(\tau \to \mu \gamma) = 1 \times 10^{-6}$

Huang, Lin, Shan, Zhang

Additional scalars
 Extended Higgs structure, familons...

For $m_A \simeq 150 GeV$ two loop term can dominate.

Significant contribution if large μ - τ mixing

 $Y_{\mu\tau} = 0.04 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

 $\tau \rightarrow \mu \gamma$ close to present bound

Summary

• Many ways to generate Δa_{μ}

 $a_{\mu} = C \frac{m_{\mu}^2}{M^2} \qquad C \leq O(1)$

Summary

• Many ways to generate
$$\Delta a_{\mu}$$
 $a_{\mu} = C \frac{m_{\mu}^2}{M^2}$ $C \leq O(1)$

• Provides strong constraint on details of new physics

SUSY: M_i not universal, spectrum constrained Family symmetry: Associated FCNC e.g. $\tau \rightarrow \mu \gamma$. Constrained Yukawa structure