Hadronic Light by Light Contribution to Muon g-2

Joaquim Prades CERN, CAFPE and Universidad de Granada

Workshop on the Muon g-2, 25-26 October 2007, Glasgow

Introduction

Introduction

- Introduction
- >>> New Short-Distance Constraints: 2003-2004

- Introduction
- New Short-Distance Constraints: 2003-2004
 Comparison

- Introduction
- **" "Old" Calculations: 1995-2001**
- >>> New Short-Distance Constraints: 2003-2004
- Comparison
- Conclusions and Prospects

Hadronic light-by-light contribution to muon g-2

$$\mathcal{M} = |e|^{7} A_{\beta} \int \frac{\mathrm{d}^{4} p_{1}}{(2\pi)^{4}} \int \frac{\mathrm{d}^{4} p_{2}}{(2\pi)^{4}} \frac{1}{q^{2} p_{1}^{2} p_{2}^{2} (p_{4}^{2} - m^{2}) (p_{5}^{2} - m^{2})} \times \Pi^{\rho\nu\alpha\beta}(p_{1}, p_{2}, p_{3}) \bar{u}(p') \gamma_{\alpha}(\not p_{4} + m) \gamma_{\nu}(\not p_{5} + m) \gamma_{\rho} u(p)$$

Introduction

Need

$$\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3) = i^3 \int d^4x \int d^4y \int d^4z \, \exp^{i(p_1 \cdot x + p_2 \cdot y + p_3 \cdot z)} \times \\ \times \langle 0|T[V^{\rho}(0)V^{\nu}(x)V^{\alpha}(y)V^{\beta}(z)]|0\rangle$$

with
$$V^{\mu}(x) = [\overline{q} \, \widehat{Q} \gamma^{\mu} q](x)$$
 and $\widehat{Q} = \frac{1}{3} \text{diag}(2, -1, -1)$
full four-point function with $p_3 \to 0$ •

Using gauge invariance

$$\Pi^{\rho\nu\alpha\lambda}(p_1, p_2, p_3) = -p_{3\beta} \frac{\delta\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}$$

one just needs derivatives at $p_3 = 0$ •

★ Many scales involved: Impose low energy and several OPE limits → Not full first principle calculation at present •

Large N_c and CHPT counting: Organizes different degrees of freedom contributions • E. de Rafael

- Goldstone boson exchange: $\mathcal{O}(N_c)$ and $\mathcal{O}(p^6)$ •
- Quark Loop and non-Goldstone boson exchange: $\mathcal{O}(N_c)$ and $\mathcal{O}(p^8)$
- Goldstone bosons Loop: $\mathcal{O}(1)$ in $1/N_c$ and $\mathcal{O}(p^4)$ •

Introduction

Based on this counting:

- Two <u>full calculations</u>
 J. Bijnens, E. Pallante, J.P. (BPP)
 M. Hayakawa, T. Kinoshita, A. Sanda (HKS)
- Dominant pseudo-scalar exchange: Extensive analytic analysis
 M. Knecht, A. Nyffeler (KN)

Found sign mistake $\sqrt{}$

M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael

New four-point form factor short-distance constraint:
 K. Melnikov, A. Vainshtein
 (see also M. Knecht, S. Peris, M. Perrottet, E. de Rafael)

<u>Model</u>: Full light-by-light saturated by pseudo-scalar and pseudo-vector pole exchanges •

"Old" Calculations: Pseudo-Scalar Exchange

Dominant contribution -> pseudo-scalar exchange •

Here, I discuss work in J. Bijnens, E. Pallante, J.P. •

We used a variety of $\pi^0 \gamma^* \gamma^*$ form factors

$$\mathcal{F}^{\mu\nu}(p_1, p_2) = \frac{N_c}{6\pi} \frac{\alpha}{f_\pi} i\varepsilon^{\mu\nu\alpha\beta} p_{1\alpha} p_{2\beta} \underline{\mathcal{F}}(p_1^2, p_2^2)$$

fulfilling as many as possible QCD constraints \bullet (Short-distance, data, U_A(1) normalization and slope at the origin). In particular,

$$\mathcal{F}(Q^2, Q^2) \rightarrow rac{A}{Q^2}$$
 $\mathcal{F}(Q^2, 0) \rightarrow rac{B}{Q^2}$

for Q^2 Euclidean and very large

<u>All</u> form factors we used <u>converge</u> for $\mu \sim (2 - 4)$ GeV and the <u>numerical difference</u> between them is <u>small</u> $\sqrt{}$

Somewhat different $\pi^0 \gamma^* \gamma^*$ form factors used in M. Hayakawa, T. Kinoshita, A. Sanda and M. Knecht, A. Nyffeler •

Results agree very well (after correcting a mistake in the sign of the phase space) •

 Adding π^0 , η and η' contributions
 BPP
 (8.5 ± 1.3)

 HKS
 (8.3 ± 0.6)

 KN
 (8.3 ± 1.2)

"Old" Calculations: Pseudo-Vector Exchange

Need $a_1^0 \gamma \gamma^*$ and $a_1^0 \gamma^* \gamma^*$ form factors \bullet

 \Rightarrow related to $\pi^0 \gamma \gamma^*$ and $\pi^0 \gamma^* \gamma^*$ by anomalous Ward identities $\sqrt{}$

Pseudo-vector exchange

	$10^{10} imes a_{\mu}$
BPP	(0.25 ± 0.10)
HKS	(0.17 ± 0.10)

Need $S^0\gamma\gamma^*$ and $S^0\gamma^*\gamma^*$ form factors ullet

They are constrained by CHPT at $\mathcal{O}(p^4)$: L_i 's reproduced $\sqrt{}$

Within ENJL: <u>Ward identities</u> impose relations between Quark loop and Scalar exchange •

$$a_{\mu}(\text{Scalar}) = -(0.7 \pm 0.2) \cdot 10^{-10}$$

Not included by M. Hayakawa, T. Kinoshita and A. Sanda nor by K. Melnikov and A. Vainshtein •

"Old" Calculations: Non-Meson Exchange "Quark-Loop"

• Low Energy (0 to Λ): ENJL model •

High Energy (Λ to ∞): Bare heavy quark loop with $m_Q = \Lambda$

Numerical matching

"Old" Calculations: Pion- and Kaon-Loop

No $\gamma^* \gamma^* \rightarrow \pi \pi$ data available: <u>Models needed</u>

Model for $\pi\pi\gamma(\gamma)$	$10^{10} imes a_{\mu}$
BPP (Full VMD)	-1.8
HKS (HGS)	-0.4

Kaon loop is much smaller: -0.05×10^{-10} •

K. Melnikov and A. Vainshtein

<u>New short-distance</u> constraint on four-point function form factor

 $\langle 0|T[V^{\nu}(p_1)V^{\alpha}(p_2)V^{\rho}(-(p_1+p_2+p_3))]|\gamma(p_3\to 0)\rangle$

using <u>OPE</u> with $-p_1^2 \simeq -p_2^2 >> -(p_1 + p_2)^2$ Euclidean and large,

$$T[V^{\nu}(p_1)V^{\alpha}(p_2)] \sim \frac{1}{\hat{p}^2} \varepsilon^{\nu\alpha\mu\beta} \hat{p}_{\mu} \ [\overline{q} \, \widehat{Q}^2 \gamma_{\beta} \gamma_5 q](p_1 + p_2)$$

with $\hat{p} = (p_1 - p_2)/2 \simeq p_1 \simeq -p_2$

New OPE Constraint: Pseudo-scalar exchange

<u>New OPE</u> constraint <u>saturated</u> by <u>pseudo-scalar</u> exchange \Rightarrow Model uses a point-like vertex when $p_3 \rightarrow 0$ •

Not all OPE constraints satisfied: Negligible numerically •

New OPE Constraint: Axial-Vector exchange

<u>Axial-Vector</u> exchange <u>depends very much</u> on the resonance mass mixing •

<u>K. Melnikov and A. Vainsthein</u>: Ideal mixing for $f_1(1285)$ and $f_1(1420)$ •

Mass mixing	$10^{10} \times a_{\mu}$
No New OPE (Nonet symmetry)	0.3 ± 0.1
M=1.3 GeV (Nonet symmetry)	0.7
$M=M_{ ho}$ (Nonet symmetry)	2.8
Ideal mixing	2.2 ± 0.5

Comparison: Leading order in N_c

Leading order in N_c contributions:

Quark Loop + Pseudo-Scalar + Pseudo-Vector + Scalar Exchanges •Total at $\mathcal{O}(N_c)$ $10^{10} \times a_{\mu}$ BPP (Nonet symmetry) $(10.9 \pm 1.9) + -(0.7 \pm 0.1) = (10.2 \pm 1.9)$ HKS (Nonet symmetry) $(9.4 \pm 1.6) + ??$ Scalar??

MV: <u>Hadronic model</u> saturated by <u>pole exchanges</u>: Cannot compare individual contributions •

Total at $\mathcal{O}(N_c)$ $10^{10} \times a_{\mu}$ MV (Nonet symmetry) $(12.1 \pm 1.0) + ??$ Scalar??MV (Ideal mass mixing) $(13.6 \pm 1.5) + ??$ Scalar??

Masses produce main difference in pseudo-vector exchange •

Study of momenta regions contribution for π^0 exchange

$$a_{\mu}^{\text{lbl}} = \int \mathrm{d}P_1 \,\mathrm{d}P_2 \ a_{\mu}^{PP}(P_1, P_2)$$

$$= \int \mathrm{d}l_1 \,\mathrm{d}l_2 \ a_\mu^{LL}(l_1, l_2)$$

$$= \int \mathrm{d}l_1 \, \mathrm{d}l_2 \mathrm{d}q \ a_{\mu}^{PPQ}(l_1, l_2, q)$$

with $l_1 \equiv \ln(P_1/\text{GeV})$, $l_2 \equiv \ln(P_2/\text{GeV})$ and $q \equiv \ln(Q/\text{GeV})$

$$P_1^2 = -p_1^2$$
, $P_2^2 = -p_2^2$, $Q^2 = -(p_1 + p_2)^2$

Conclusions of this comparison

Cut-off in $Q = \Leftrightarrow 58$ % of <u>numerical difference</u> come from MV OPE violating regions •

Fixing $P1 = P2 \rightleftharpoons$ Numerical difference come from low values of Q and moderate values of $P_1 = P_2 \bullet$

Important to control energy regions below 2 GeV •

Main ENJL quark-loop contribution is from that region •

Comparison: NLO in $1/N_c$

Next to leading order in $1/N_c$ contributions:

Charged Pion and Kaon Loop •

Model for $\pi\pi\gamma(\gamma)$	$10^{10} imes a_{\mu}$
BPP (Full VMD)	-1.9 ± 0.5
HKS (HGS)	-0.45 ± 0.8

K. Melnikov and A. Vainshtein: Full NLO in $1/N_c$ estimate

$$a_{\mu} = (0 \pm 1) \cdot 10^{-10}$$

Comparison

BPP vs HKS:

Full	$10^{10} imes a_{\mu}$
BPP	$\textbf{8.3}\pm\textbf{3.2}$
HKS	8.9 ± 1.7

No scalar exchange, different quark loop and different pion and kaon loops almost compensate •

BPP vs MV:

Full	$10^{10} imes a_{\mu}$
BPP	$\textbf{8.3}\pm\textbf{3.2}$
MV	13.6 ± 2.5

Several order $1.5 \cdot 10^{-10}$ differences, in addition to new OPE effects •

 $-1.5 \cdot 10^{-10}$ (Different pseudo-vector mass mixing)

 $-0.7 \cdot 10^{-10}$ (No scalar exchange)

 $-1.9 \cdot 10^{-10}$ (No pion+kaon loop)

 $= -4.1 \cdot 10^{-10}$ •

Final [BPP-MV] difference: $-5.3 \cdot 10^{-10}$ •

Conclusions and Prospects

Unsatisfactory situation: Needs new evaluation(s) of the full hadronic light-by-light contribution •

★ At $O(N_c)$: Study full four-point function with large N_c techniques • Granada-Lund-València

 Implement as many <u>short-distance</u> and <u>low energy constraints</u> as possible •
 (possible problems J. Bijnens, E. Gámiz, E. Lipartia, J.P.)

★ At NLO in $1/N_c \Rightarrow$ Non-Goldstone bosons at one loop • Little is known (see recent work by A. Pich, I. Rosell, J. Sanz-Cillero) •

At present, Large N_c agree within 1 $\sigma \rightleftharpoons$

$$a_{\mu}^{\rm lbl} = (11.0 \pm 4.0) \times 10^{-10}$$

<u>More work</u> needed to have a <u>definite answer</u> of hadronic light-by-light contribution to muon g-2 with reduced uncertainty •

Goal: Control present model dependences •