Hadronic Light by Light Contribution to Muon g - 2

Joaquim Prades

CERN, CAFPE and Universidad de Granada

Workshop on the Muon g-2, 25-26 October 2007, Glasgow

. Introduction

, Introduction

, "Old" Calculations: 1995-2001
. Introduction
, "Old" Calculations: 1995-2001

- New Short-Distance Constraints: 2003-2004
. Introduction
, "Old" Calculations: 1995-2001
* New Short-Distance Constraints: 2003-2004
- Comparison
, Introduction
, "Old" Calculations: 1995-2001
(New Short-Distance Constraints: 2003-2004
-Comparison
-Conclusions and Prospects

Hadronic light-by-light contribution to muon $g-2$

$$
\begin{gathered}
\mathcal{M}=|e|^{7} A_{\beta} \int \frac{\mathrm{d}^{4} p_{1}}{(2 \pi)^{4}} \int \frac{\mathrm{~d}^{4} p_{2}}{(2 \pi)^{4}} \frac{1}{q^{2} p_{1}^{2} p_{2}^{2}\left(p_{4}^{2}-m^{2}\right)\left(p_{5}^{2}-m^{2}\right)} \\
\times \underline{\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}
\end{gathered}
$$

Need

$$
\begin{aligned}
\Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)=i^{3} \int & \mathrm{~d}^{4} x \int
\end{aligned} \mathrm{~d}^{4} y \int \mathrm{~d}^{4} z \exp ^{i\left(p_{1} \cdot x+p_{2} \cdot y+p_{3} \cdot z\right)} \times
$$

with $V^{\mu}(x)=\left[\bar{q} \widehat{Q} \gamma^{\mu} q\right](x)$ and $\widehat{Q}=\frac{1}{3} \operatorname{diag}(2,-1,-1)$
full four-point function with $p_{3} \rightarrow 0 \bullet$
Using gauge invariance

$$
\Pi^{\rho \nu \alpha \lambda}\left(p_{1}, p_{2}, p_{3}\right)=-p_{3 \beta} \frac{\delta \Pi^{\rho \nu \alpha \beta}\left(p_{1}, p_{2}, p_{3}\right)}{\delta p_{3 \lambda}}
$$

one just needs derivatives at $p_{3}=0 \bullet$

Ł Many scales involved: Impose low energy and several OPE limits \Rightarrow Not full first principle calculation at present \bullet

Large N_{c} and CHPT counting:
Organizes different degrees of freedom contributions •
E. de Rafael

- Goldstone boson exchange: $\mathcal{O}\left(N_{c}\right)$ and $\mathcal{O}\left(p^{6}\right)$ •
- Quark Loop and non-Goldstone boson exchange: $\mathcal{O}\left(N_{c}\right)$ and $\mathcal{O}\left(p^{8}\right)$ •
- Goldstone bosons Loop: $\mathcal{O}(1)$ in $1 / N_{c}$ and $\mathcal{O}\left(p^{4}\right)$ -

Based on this counting:

- Two full calculations
J. Bijnens, E. Pallante, J.P. (BPP)
M. Hayakawa, T. Kinoshita, A. Sanda (HKS)
- Dominant pseudo-scalar exchange: Extensive analytic analysis •
M. Knecht, A. Nyffeler (KN)

Found sign mistake $\sqrt{ }$
M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael
\star New four-point form factor short-distance constraint:
K. Melnikov, A. Vainshtein
(see also M. Knecht, S. Peris, M. Perrottet, E. de Rafael)

Model: Full light-by-light saturated by pseudo-scalar and pseudo-vector pole exchanges •

Dominant contribution \Rightarrow pseudo-scalar exchange \bullet

Here, I discuss work in J. Bijnens, E. Pallante, J.P. •

We used a variety of $\pi^{0} \gamma^{*} \gamma^{*}$ form factors

$$
\mathcal{F}^{\mu \nu}\left(p_{1}, p_{2}\right)=\frac{N_{c}}{6 \pi} \frac{\alpha}{f_{\pi}} i \varepsilon^{\mu \nu \alpha \beta} p_{1 \alpha} p_{2 \beta} \underline{\mathcal{F}\left(p_{1}^{2}, p_{2}^{2}\right)}
$$

fulfilling as many as possible QCD constraints • (Short-distance, data, $\mathrm{U}_{A}(1)$ normalization and slope at the origin). In particular,

$$
\begin{aligned}
\mathcal{F}\left(Q^{2}, Q^{2}\right) & \rightarrow \frac{A}{Q^{2}} \\
\mathcal{F}\left(Q^{2}, 0\right) & \rightarrow \frac{B}{Q^{2}}
\end{aligned}
$$

for Q^{2} Euclidean and very large

All form factors we used converge for $\mu \sim(2-4) \mathrm{GeV}$ and the numerical difference between them is small $\sqrt{ }$

Somewhat different $\pi^{0} \gamma^{*} \gamma^{*}$ form factors used in M. Hayakawa, T. Kinoshita, A. Sanda and M. Knecht, A. Nyffeler •

Results agree very well (after correcting a mistake in the sign of the phase space)

Adding π^{0}, η and η^{\prime} contributions

	$10^{10} \times a_{\mu}$
BPP	(8.5 ± 1.3)
HKS	(8.3 ± 0.6)
KN	(8.3 ± 1.2)

Need $a_{1}^{0} \gamma \gamma^{*}$ and $a_{1}^{0} \gamma^{*} \gamma^{*}$ form factors •
\Rightarrow related to $\pi^{0} \gamma \gamma^{*}$ and $\pi^{0} \gamma^{*} \gamma^{*}$ by anomalous Ward identities $\sqrt{ }$

Pseudo-vector exchange

	$10^{10} \times a_{\mu}$
BPP	(0.25 ± 0.10)
HKS	(0.17 ± 0.10)

Need $S^{0} \gamma \gamma^{*}$ and $S^{0} \gamma^{*} \gamma^{*}$ form factors •
They are constrained by CHPT at $\mathcal{O}\left(p^{4}\right)$: L_{i} 's reproduced
Within ENJL: Ward identities impose relations between Quark loop and Scalar exchange •

$$
a_{\mu}(\text { Scalar })=-(0.7 \pm 0.2) \cdot 10^{-10}
$$

Not included by M. Hayakawa, T. Kinoshita and A. Sanda nor by K. Melnikov and A. Vainshtein •

$\Lambda[\mathrm{GeV}]$	$10^{10} \times a_{\mu}$
0.7	2.2
1.0	2.0
2.0	1.9
4.0	2.0

- Low Energy (0 to Λ): ENJL model •
- High Energy $(\Lambda$ to $\infty)$: Bare heavy quark loop with $m_{Q}=\Lambda$ -
- Numerical matching $\sqrt{ }$

Leading contribution in chiral counting, suppressed by $1 / N_{c}$

No $\gamma^{*} \gamma^{*} \rightarrow \pi \pi$ data available: Models needed!

Model for $\pi \pi \gamma(\gamma)$	$10^{10} \times a_{\mu}$
BPP (Full VMD)	-1.8
HKS (HGS)	-0.4

Kaon loop is much smaller: $-0.05 \times 10^{-10} \bullet$
K. Melnikov and A. Vainshtein

New short-distance constraint on four-point function form factor

$$
\langle 0| T\left[V^{\nu}\left(p_{1}\right) V^{\alpha}\left(p_{2}\right) V^{\rho}\left(-\left(p_{1}+p_{2}+p_{3}\right)\right)\right]\left|\gamma\left(p_{3} \rightarrow 0\right)\right\rangle
$$

using $\underline{\text { OPE with }}-p_{1}^{2} \simeq-p_{2}^{2} \gg-\left(p_{1}+p_{2}\right)^{2}$ Euclidean and large,

$$
T\left[V^{\nu}\left(p_{1}\right) V^{\alpha}\left(p_{2}\right)\right] \sim \frac{1}{\hat{p}^{2}} \varepsilon^{\nu \alpha \mu \beta} \hat{p}_{\mu}\left[\bar{q} \widehat{Q}^{2} \gamma_{\beta} \gamma_{5} q\right]\left(p_{1}+p_{2}\right)
$$

with $\hat{p}=\left(p_{1}-p_{2}\right) / 2 \simeq p_{1} \simeq-p_{2}$

New OPE constraint saturated by pseudo-scalar exchange

 \Rightarrow Model uses a point-like vertex when $p_{3} \rightarrow 0 \bullet$Not all OPE constraints satisfied: Negligible numerically •

Axial-Vector exchange depends very much on the resonance mass mixing •

K. Melnikov and A. Vainsthein: Ideal mixing for $f_{1}(1285)$ and $f_{1}(1420)$

Mass mixing	$10^{10} \times a_{\mu}$
No New OPE (Nonet symmetry)	0.3 ± 0.1
$\mathrm{M}=1.3 \mathrm{GeV}$ (Nonet symmetry)	0.7
$\mathrm{M}=\mathrm{M}_{\rho}$ (Nonet symmetry)	2.8
Ideal mixing	2.2 ± 0.5

Leading order in N_{c} contributions:
Quark Loop + Pseudo-Scalar + Pseudo-Vector + Scalar Exchanges •

Total at $\mathcal{O}\left(N_{c}\right)$	$10^{10} \times a_{\mu}$
BPP (Nonet symmetry)	$\frac{(10.9 \pm 1.9)}{-(0.7 \pm 0.1)}=(10.2 \pm 1.9)$
HKS (Nonet symmetry)	$\underline{(9.4 \pm 1.6)+? ? S c a l a r ? ? ~}$

MV: Hadronic model saturated by pole exchanges:
Cannot compare individual contributions •

Total at $\mathcal{O}\left(N_{c}\right)$	$10^{10} \times a_{\mu}$
MV (Nonet symmetry)	$\underline{(12.1 \pm 1.0)}+? ?$ Scalar??
MV (Ideal mass mixing)	$\underline{(13.6 \pm 1.5)}+? ?$ Scalar??

Masses produce main difference in pseudo-vector exchange •

Study of momenta regions contribution for π^{0} exchange

$$
\begin{aligned}
& a_{\mu}^{\mathrm{lbl}}=\int \mathrm{d} P_{1} \mathrm{~d} P_{2} a_{\mu}^{P P}\left(P_{1}, P_{2}\right) \\
& \quad=\int \mathrm{d} l_{1} \mathrm{~d} l_{2} a_{\mu}^{L L}\left(l_{1}, l_{2}\right) \\
& \quad=\int \mathrm{d} l_{1} \mathrm{~d} l_{2} \mathrm{~d} q a_{\mu}^{P P Q}\left(l_{1}, l_{2}, q\right)
\end{aligned}
$$

with $l_{1} \equiv \ln \left(P_{1} / \mathrm{GeV}\right), l_{2} \equiv \ln \left(P_{2} / \mathrm{GeV}\right)$ and $q \equiv \ln (Q / \mathrm{GeV})$
$P_{1}^{2}=-p_{1}^{2}, \quad P_{2}^{2}=-p_{2}^{2}, \quad Q^{2}=-\left(p_{1}+p_{2}\right)^{2}$

Conclusions of this comparison
Cut-off in $Q=\varnothing 58 \%$ of numerical difference come from MV OPE violating regions \bullet

Fixing $P 1=P 2 \leftrightharpoons$ Numerical difference come from low values of Q and moderate values of $P_{1}=P_{2} \bullet$

Important to control energy regions below 2 GeV •
Main ENJL quark-loop contribution is from that region •

Next to leading order in $1 / N_{c}$ contributions:

Charged Pion and Kaon Loop •

Model for $\pi \pi \gamma(\gamma)$	$10^{10} \times a_{\mu}$
BPP (Full VMD)	-1.9 ± 0.5
HKS (HGS)	-0.45 ± 0.8

K. Melnikov and A. Vainshtein:

Full NLO in $1 / N_{c}$ estimate

$$
a_{\mu}=(0 \pm 1) \cdot 10^{-10}
$$

BPP vs HKS:

Full	$10^{10} \times a_{\mu}$
BPP	8.3 ± 3.2
HKS	8.9 ± 1.7

No scalar exchange, different quark loop and different pion and kaon loops almost compensate •

BPP vs MV:

Full	$10^{10} \times a_{\mu}$
BPP	8.3 ± 3.2
MV	13.6 ± 2.5

Several order $1.5 \cdot 10^{-10}$ differences, in addition to new OPE effects -
$-1.5 \cdot 10^{-10}$ (Different pseudo-vector mass mixing)
$-0.7 \cdot 10^{-10}$ (No scalar exchange)
$-1.9 \cdot 10^{-10}$ (No pion+kaon loop)
$=-4.1 \cdot 10^{-10}$
Final [BPP-MV] difference: $\underline{-5.3 \cdot 10^{-10}}$

Unsatisfactory situation: Needs new evaluation(s) of the full hadronic light-by-light contribution •
\star At $\mathcal{O}\left(N_{c}\right)$: Study full four-point function with large N_{c} techniques • Granada-Lund-València

- Implement as many short-distance and low energy constraints as possible •
(possible problems J. Bijnens, E. Gámiz, E. Lipartia, J.P.)
\star At NLO in $1 / N_{c} \rightleftharpoons$ Non-Goldstone bosons at one loop • Little is known (see recent work by A. Pich, I. Rosell, J. Sanz-Cillero) •

At present,
Large N_{c} agree within $1 \sigma \Rightarrow$

$$
a_{\mu}^{\mathrm{lbl}}=(11.0 \pm 4.0) \times 10^{-10}
$$

More work needed to have a definite answer of hadronic light-by-light contribution to muon $g-2$ with reduced uncertainty

Goal: Control present model dependences •

