(Non-)BPS bound states and multi-instantons

based on:

R. Blumenhagen, M. Cvetič, R. Richter, T.W., arXiv: 0708.0403M. Cvetič, R. Richter, T.W., arXiv: 0803.2513

Timo Weigand

Department of Physics and Astronomy, University of Pennsylvania

Liverpool, 03/27-29/08 - p.1

Motivation

Non-perturbative corrections to effective action of 4D string compactifications play a prominent role despite exponential suppression: crucial if corresponding interactions forbidden perturbatively

- relevant for very definition of vacuum
 ↔ moduli stabilisation
- determine phenomenological properties of vacuum: perturbatively forbidden important matter couplings
 ~> Dynamical SUSY breaking
 - → natural generation of observed hierarchies,
 - e.g. Majorana masses, certain Yukawas, μ -terms

This talk:

D-brane instantons in Type II orientifolds: Which D-brane instantons correct the superpotential?

According to general lore : instanton must wrap BPS cycle:

- volume minimizing in homology class
- preserves $\frac{1}{2}$ SUSY \rightarrow minimal # of Goldstone fermions

BPS brane of (co)homological charge $\Gamma \leftrightarrow$ zentral charge $Z_{\Gamma}(m)$

$$Z \simeq \begin{cases} \int_{\Pi} \Omega & \text{A-type branes} \\ \int_{X} e^{J} \operatorname{ch}(i\mathcal{F}) \sqrt{\operatorname{td}(X)} & \text{B-type branes} \end{cases}$$

SUSY condition for Type II orientifolds: $\varphi = Arg(Z) = 0 \leftrightarrow \text{hypersurface } \mathcal{M}_{SUSY} \text{ in moduli space}$

BPS object can decay across hypersurface \mathcal{M}_0 where $|Z_{\Gamma}| = |Z_{\Gamma_1}| + |Z_{\Gamma_2}|$ for $\Gamma = \Gamma_1 + \Gamma_2$

Distinguish 2 types of decay:

• line of threshold stability $\leftrightarrow \exists$ BPS object on both sides $\mathcal{M}_+, \mathcal{M}_ \langle \Gamma_1, \Gamma_2 \rangle = n^+ - n^-, n^+ \neq 0 \neq n^-$ (non-minimal intersection)

• line of marginal stability $\leftrightarrow \exists$ BPS object only on one side Either $n^+ = 0$ or $n^- = 0$ (strictly chiral intersection) spectrum of BPS cycles discontinuous

⇒Multi-instanton effects come in naturally

[Garcia-Etxebarria,Uranga 0711.1430]

Focus in this talk:

Can instantons decaying across line of marginal stability contribute to the superpotential?

In $\mathcal{N} = 1$ orientifolds on $X/(\Omega\sigma)$ distinguish: instantons along invariant vs non-invariant cycles on X

1.) U(1) instantons in region \mathcal{M}_0 in moduli space: E_p along cycle $\Xi \neq \Xi'$ on SUSY locus \mathcal{M}_0 :

universal zero modes:

4 bosonic modes $x_E^i \leftrightarrow$ Poincaré inv. in 4D 2 + 2 Goldstinos $\theta_{\alpha_i} \overline{\tau}_{\dot{\alpha}} \leftrightarrow$ broken SUSY

$\mathcal{N} = 1$	$\mathcal{N} = 1'$
θ_{lpha}	$ au_{lpha}$
$\overline{ heta}_{\dot{lpha}}$	$\overline{ au}_{\dot{lpha}}$

2.) If $\Xi = \Xi'$: universal modes subject to orientifold projection O(1) instantons: x_E^i, θ_{α} survive, $\overline{\tau}_{\dot{\alpha}}$ projected out \Rightarrow superpotential contributions possible Liverpool, 03/27-29/08 - p.5

Can U(1) along $\Xi \neq \Xi'$ contribute as well?

Turns out: [BCRW, 0708.0403] Yes, if \exists modes in E - E' sector that lift extra $\overline{\tau}^{\dot{\alpha}}$ \leftrightarrow modes allow bound state out of Ξ and Ξ' of O(1) type

works without problems if Ξ and Ξ' are at vector-like threshold - non-pert. superpotential provided bound state is rigid

[BCRW, 0708.0403], [G-E,U. 0711.1430]

for line of marginal stability: puzzle since BPS state can disappear! Compatible with holomorphic superpotential?

U(1) instantons in $IIA/\Omega\overline{\sigma}$

For concreteness: D2-brane instantons in Type IIA consider pair of E2 - E2' instantons at SUSY angle Suppose intersection on top of orientifold: $[\Xi' \cap \Xi]^+ = n^+ = [\Pi_{O6} \cap \Xi]^+, \qquad [\Xi' \cap \Xi]^- = n^- = [\Pi_{O6} \cap \Xi]^-$

recombination modes in E - E' sector

zero mode	Q_E	Multiplicity	
m,\overline{m}	2,-2	$\frac{1}{2}[\Xi' \cap \Xi + \Pi_{O6} \cap \Xi]^+$	
$\overline{\mu}{}^{\dot{lpha}}$	-2	$\frac{1}{2}[\Xi' \cap \Xi + \Pi_{O6} \cap \Xi]^+$	
μ^{lpha}	2	$\frac{1}{2}[\Xi' \cap \Xi - \Pi_{O6} \cap \Xi]^+$	
n,\overline{n}	-2 , 2	$\frac{1}{2}[\Xi' \cap \Xi + \Pi_{O6} \cap \Xi]^{-}$	
$\overline{ u}{}^{\dot{lpha}}$	2	$\frac{1}{2}[\Xi' \cap \Xi + \Pi_{O6} \cap \Xi]^{-}$	
$ u^{lpha}$	-2	$\frac{1}{2}[\Xi' \cap \Xi - \Pi_{O6} \cap \Xi]^-$	

Instantons and threshold stability

Minimal vector-like case: $n^+ = n^- = 1$ E - E' modes: $m, \overline{m}, \overline{\mu}^{\dot{\alpha}}, \qquad n, \overline{n}, \overline{\nu}^{\dot{\alpha}}$

(re)combination governed by usual D-term in instanton effective action:

$$S_D = \frac{1}{2g_E^2} (2m\overline{m} - 2n\overline{n} - \xi)^2$$

in \mathcal{M}_0 : $\xi = 0$, instanton (singular) union $E \cup E'$: U(1) locus in \mathcal{M}_+ : $\xi > 0$, condensation of $m \to$ bound state E' # Ein \mathcal{M}_- : $\xi < 0$, condensation of $n \to$ bound state E # E'

Instantons and threshold stability

Consider system on U(1) locus \mathcal{M}_0

fermionic instanton moduli action: [BCRW, 0708.0403]

 $S_{fermionic} = m \,\overline{\mu}^{\dot{\alpha}} \,\overline{\tau}_{\dot{\alpha}} - n \,\overline{\nu}^{\dot{\alpha}} \,\overline{\tau}_{\dot{\alpha}}$ Integrate out $\overline{\tau}^{\dot{\alpha}}$ and combination $(\overline{\mu}^{\dot{\alpha}} - \overline{\nu}^{\dot{\alpha}})$

In absence of further interactions (e.g. toroidal orbifolds) $\overline{\chi}^{\dot{\alpha}} = \overline{\mu}^{\dot{\alpha}} + \overline{\nu}^{\dot{\alpha}}$ unlifted \Rightarrow no superpotential, but higher fermionic F-terms [BCRW, 0708.0403]

As pointed out in [G-E, U. 0711.1430]: If exist quartic F-term couplings $(MN)^2$ $\Rightarrow \overline{\chi}^{\dot{\alpha}}$ lifted and superpotential contributions possible Presence of these terms equivalent to rigidity of O(1) bound state in \mathcal{M}_+ or $\mathcal{M}_$ to be checked in conrete examples

Instantons and marginal stability

Now: chiral intersection $n^+ = 1, n^- = 0$ [BCRW, 0708.0403] E - E' modes: $m, \overline{m}, \overline{\mu}^{\dot{\alpha}}$ $S_D = \frac{1}{2g_E^2} (2m\overline{m} - \xi)^2$ in \mathcal{M}_0 : $\xi = 0$, instanton (singular) union $E \cup E'$: U(1) locus in \mathcal{M}_+ : $\xi > 0$, condensation of $m \to$ bound state E' # Ein \mathcal{M}_- : $\xi < 0$, no BPS state of charge [E] + [E'] exists!

Turns out: $E \cup E'$ and E' # E do not contribute F-terms: Consider $E \cup E'$ on \mathcal{M}_0 : by tadpole cancellation \exists charged fermionic zero modes λ^i in instanton - D-brane sector of $U(1)_E$ charge Q_E under $U(1)_E$ $\sum_i Q_E(\lambda^i) = -\sum_a N_a \Xi \circ (\Pi_a + \Pi_{a'}) = -4 \Xi \circ \Pi_{O6} = 4$

Instantons and marginal stability

No perturbative couplings in instanton effective action can lift these chiral excess modes λ^i ! [BCRW, 0708.0403] usual open string couplings $\lambda_a \phi_{ab} \lambda_b$ invariant under $U(1)_E$ \rightsquigarrow 4 excess modes λ^i with $Q_E = 4$ cannot pair up this way only gauge invariant combination: $\overline{m}^{-1} (\lambda)_b^{-1/2} \prod \phi_{b_i c_i}^1 \lambda_c^{-1/2}$

These couplings are zero due to chiral ring structure

(cf. [Greene,Distler '88])

Non-perturbative lifting of λ^i via multi-instanton possible!

Consider in addition 2 O(1) instantons $\widetilde{E}_1, \widetilde{E}_2$ along $\widetilde{\Xi}_1, \widetilde{\Xi}_2$ $[\widetilde{\Xi}_1 \cap \Pi_a]^+ = 2 = [\widetilde{\Xi}_2 \cap \Pi_a]^+, \qquad [\Xi \cap \widetilde{\Xi}_1]^+ = 1 = [\Xi \cap \widetilde{\Xi}_2]^+.$

Example on $T^6/\mathbb{Z}_2 imes \mathbb{Z}_2'$ in [arXiv:0803.2513]

Extra modes:

zero mode	sector	repr.	multiplicity
k_i , κ_i^lpha	$\widetilde{E}_i - E$	$(1_{\widetilde{E}_i}, -1_E)$	$[\Xi \cap \widetilde{\Xi}_i]^+ = 1$
\overline{k}_i , $\overline{\kappa}_i^{\dot{lpha}}$	$\widetilde{E}_i - E$	$(1_{\widetilde{E}_i},1_E)$	$[\Xi \cap \widetilde{\Xi}_i]^+ = 1$
$\widetilde{\lambda}_1^i$	$\widetilde{E}_1 - D6_a$	$(1_{\widetilde{E}_1}, 1_a)$	$[\widetilde{\Xi}_1 \cap \Pi_a]^+ = 2$
$\widetilde{\lambda}_2^i$	$\widetilde{E}_2 - D6_a$	$(1_{\widetilde{E}_2}, 1_a)$	$[\widetilde{\Xi}_2 \cap \Pi_a]^+ = 2$

Consider system $E \cup E' \cup \widetilde{E}_1 \cup \widetilde{E}_2$ on \mathcal{M}_0 : All fermionic modes can be lifted:

$$S_{1} \simeq \kappa_{1}^{\alpha} \widetilde{\theta}_{1\alpha} \widetilde{\lambda}_{1}^{i} \lambda^{j} + (1 \leftrightarrow 2)$$

$$S_{2} \simeq \overline{\mu}^{\dot{\alpha}} \overline{\kappa}_{1\dot{\alpha}} \overline{k}_{1} + \overline{m} \overline{\kappa}_{1}^{\dot{\alpha}} \overline{\kappa}_{1\dot{\alpha}} + m \kappa_{1}^{\alpha} \kappa_{1\alpha} + (1 \leftrightarrow 2),$$

$$S_{3} \simeq m \overline{\mu}^{\dot{\alpha}} \overline{\tau}_{\dot{\alpha}} + \overline{\kappa}_{1}^{\dot{\alpha}} \overline{\tau}_{\dot{\alpha}} k_{1} + \overline{\kappa}_{2}^{\dot{\alpha}} \overline{\tau}_{\dot{\alpha}} k_{2}$$

 \Rightarrow non-zero path integral over bosonic modes:

$$\int d^2k_1 \ d^2k_2 \ d^2m \ (|k_1|^2 \ |k_2|^2 + |m|^4) \ exp(-S_D - S_F)$$
$$S_D = \frac{1}{2g_E^2} \left(2m\overline{m} - k_1\overline{k}_1 - k_2\overline{k}_2 - \xi\right)^2,$$
$$S_F = l^2 \left((k_1 \ \overline{k}_1)^2 + |m \ k_1|^2 + (k_2 \ \overline{k}_2)^2 + |m \ k_2|^2\right)$$

 $\Rightarrow W \simeq e^{-\left(U(\Xi)+U(\widetilde{\Xi}_1)+U(\widetilde{\Xi}_2)\right)}, \qquad U(\Pi) = \frac{2\pi}{\ell_s^3} \left(\int_{\Pi} \frac{1}{g_s} \Omega + iC_3\right)$ How does this match results away from \mathcal{M}_0 ?

 $\begin{array}{l} \mathcal{M}_+:\ \xi>0 \rightsquigarrow \langle m\rangle = \sqrt{\xi/2} \Rightarrow {\sf BPS} \text{ bound state } Y=E'\#E \\ {\sf BPS} \text{ multi-instanton } Y\cup \widetilde{E}_1\cup \widetilde{E}_2 \text{ contributes:} \\ \langle m\rangle \text{ renders modes } m, \overline{\mu}, \overline{\tau}, \overline{k}, \overline{\kappa} \text{ massive} \\ {\sf charged modes lifted via } \langle \widetilde{\theta}_1^\alpha \, \widetilde{\theta}_1^\beta \, \widetilde{\lambda}^i \lambda^j \widetilde{\lambda}^k \lambda^l \rangle +1 \leftrightarrow 2 \end{array}$

What happens on $\mathcal{M}_{-} \leftrightarrow \xi < 0$?

$$S_D = \frac{1}{2g_E^2} \left(2m\overline{m} - k_1\overline{k}_1 - k_2\overline{k}_2 - \xi \right)^2,$$

$$S_F = l^2 \left((k_1\overline{k}_1)^2 + |m\,k_1|^2 + (k_2\overline{k}_2)^2 + |m\,k_2|^2 \right)$$

Classical vacuum $\widetilde{\Psi}$ for $|k_1| = |k_2| = \sqrt{-\frac{\xi}{2+a}}, \quad m = 0, \quad (a = 2g_E^2 l^2 << 1)$ D- and F-flatness broken! There exists no true BPS configuration in usual sense $\widetilde{\Psi}$ is non-calibrated cycle

Consider instead non-BPS state $\Psi = \widetilde{E}_1 \# (E \cup E') \# \widetilde{E}_2 \leftrightarrow |k_1| = |k_2| = \sqrt{-\frac{\xi}{2}}$ $\mathcal{O}(g_s^{-1}): \text{ D-flat, } k_i \text{ massive, } m \text{ massless (modulus)}$ $\mathcal{O}(g_s^0): \text{ F-flatness broken, } m \text{ massive ('obstructed')}_{\text{Liverpool, 03/27-29/08 - p.15}}$

 $\rightsquigarrow \Psi$ not dissimilar to quasi-instanton in field theory:

- solution to field equations only at leading order in coupling
- VEV of scalars invalidate solution at higher order

For holomorphicity of superpotential this object has to contribute on $\mathcal{M}_{-}!$

Summary:

- \mathcal{M}_+ : superpotential W corrected by BPS configuration $(E' \# E) \cup \widetilde{E}_1 \cup \widetilde{E}_2$
- \mathcal{M}_0 : (E' # E) meets line of marginal stability, BPS multi-instanton $E \cup E' \cup \widetilde{E}_1 \cup \widetilde{E}_2$ contributes to W

• \mathcal{M}_{-} : \exists no BPS state of charge $[E] + [E'] + [\widetilde{E}_{1}] + [\widetilde{E}_{1}]$ superpotential corrected by quasi-instanton $\Psi = \widetilde{E}_{1} \# (E \cup E') \# \widetilde{E}_{2}$

Type I/Heterotic picture

O(1) instantons $\leftrightarrow E1$ instantons along holomorphic curves U(1) instantons $\leftrightarrow E5$ instantons with gauge bundle $L \oplus L^{\vee}$ recombination modes in E5-E5' sector: extension moduli $Ext^1(L^{\vee}, L) = H^1(L^2)$ or $Ext^1(L, L^{\vee}) = H^2(L^2)$ $n^+ = h^1(L^2), n^- = h^2(L^2)$

Multi-instantons vs. bound states as we vary Kähler moduli J: $\mathcal{M}_0: L \oplus L^{\vee}$ $\mathcal{M}_+: 0 \to L \to V \to L^{\vee} \to 0$ $\mathcal{M}_-: 0 \to L^{\vee} \to U \to L \to 0$

All couplings can be analysed in a similar spirit:

- quartic couplings for $n^+ = 1 = n^- \leftrightarrow H^1(V \otimes V^{\vee}) = 0$ Depends on concrete bundles!
- chiral case $n^+ = 1, n^- = 0$ bound states of two E1-instantons and one E5 w/ $L \oplus L^{\vee}$

Conclusions

More types of instantons contribute to superpotential

Type I/Heterotic: magnetised E5 or NS5 instantons are relevant for superpotential!

affects vanishing results for certain heterotic backgrounds?

BPS decay in moduli space ⇔ multi-instantons Discussed explicit decay of BPS multi-instanton into non-BPS configuration

Conjecture: even non-BPS instantons related to BPS instantons somewhere in moduli space contribute to superpotential

concrete examples were non-BPS in subtle way (destabilised by F-terms)

Can this effect be demonstrated in other examples?