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Introduction I: Motivations

Two main different paths to heterotic string phenomenology

Orbifold

compactifications

Exact quantization of string

theory: CFT approach.

Buchmtller, Hamaguchi, Lebedev, Ratz;
Liverpool group; Bonn group; ...

My task:
—>

Reconciliate
them!

Smooth manifold
compactifications

Kaluza - Klein reduction

of 10d SUGRA

Ovrut, et al.; Oxford group, ....

Reproduce the orbifold models as compactifications of

10d SUGRA/SYM in the presence of gauge fluxes




Introduction II: the Spirit

I - Resolve the orbifold geometry

Ia - Given the orbifold m

Ib - Cut apart each singularity and resolve it:

characterize the local geometric structure “hidden” in
the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved sing{ﬂarities:

characterize the to]pology of the whole CY space
(non-localized cycles)

Get a smooth compact CY space
(having the original orbifold as singular limit)




IT - Compactify 10d SUGRA/SYM on the smooth CY

- A crucial detail:
Orbifold action g embedded in the

Orbifold models: gauge degrees of freedom.
P

The freedom in doing this
generates a vast set of models!

SUGRA models:

U(1) gauge flux wrapped on
the new localizes cycles, to be embedded in SO(32) or Eg x Es.
The freedom in the embedding generates a vast set of models

Reproduce each string orbifold model as a
compactification of 10d SUGRA + SYM on a smooth CY
embedding the “right” gauge flux




Introduction III - Outline

1) Getting the smooth CY space
- Basic facts in complex/toric geomettry.
- Resolution of orbifold singularities using toric geometry
- Gluing ot the resolved singularities
- A specific example: resolution of T*4/Z3

2) 10d SUGRA on the smooth CY space - only local study

- Consistency conditions (flux quantization, SYM e.o.m, ... )

- A specific example: C?/Z4 models
3) Results and working plan




I - Resolution of Toroidal orbifolds
using toric geometry
Lust, Reffert, Scheidegger, Stieberger ‘07



Basic facts in complex/toric geometry

Divisors

- Given a complex n-dim space (parameters z') a divisor X is
locally an analytic hypersurface (e.g. z! = 0).

- To each divisor X we can associate a complex line bundle.

Linear equivalence

- Given two divisors X and Y we say that they are equivalent
X~Y it the associated line bundles differ by a trivial one.

- The set of divisors corresponds, modulo linear equivalence,
to the (1,1)-forms on the space.

Intersection of divisors

- An intersection of divisors defines curves in the space.

- Intersecting n divisors we get points, the intersecting number
X1 Xz ... Xn = p means that the hypersurface X intersects the
curve Xz ... Xy in p points (or that Xsintersects ... ).

- Equivalently, we can read X1 X5 ... X4 = p as the integral of
the (1,1)-form Xjon Xz ... X, (or the integral of X; on ...).



Resolution of local singularities

- Each singularity (we treat) has form C*/Zm, with parameters Z.

- Before resolution, the space has n divisors D, the surfaces z' = 0.

- The singularity is resolved adding new exceptional divisors, E’s
to the set of D’s.

- These exceptional divisors are not unrelated to the old ones:
there are n linear relations Dj ~ ajj E;.

- In the resolution some basic intersection numbers are fixed
by the procedure, the others can be re-obtained using the linear

equivalence.




Gluing together the singularities into T2*/Z.,
- Fach resolved singularity 1s equipped with

- a set of divisors {Dj, Ei};

- a set of linear equivalences Dj~ a; E;

- the local intersection numbers.
- Gluing:

-“put together” the divisors in a single set

- “put together” the linear equivalences 1n a single set

- compute the intersections among the various divisors.
Caveats

1) There are extra (1,1)-forms/divisors inherited from T?%: R;.
2) Some of the divisors (all R’s and D’s, some of the E’s) extend in
planes in the orbifold: they are “shared” by different singularities.

T4/ Z, example: the divisors D1 corresponding to the surface z1=0

extends along z; and 1s shared among the 4 singularities (0, x).
P

z =



Example I: K3 as a T*/Z; orbifold

- T4 = T?x T? complex coordinates z1, z>.
- Z3 has 3 x 3 equivalent fixed points (singularities).

Local information:

- Each singularity has form C%/Z3, with 2 divisots (pre-resolution):
D1 corresponding to z!=0 (fills the second C-plane)

D> corresponding to z2=0 (fills the first C-plane)
- Resolution: add two exceptional divisors Eiand Fo.

Linear equivalences: 0 ~3 D1+ E1 + 2

O~3D>)+ Ey,+ 2
> = HEoE1 = E1Do =1
1 =D2E>2=0 E1E; = ExE; = -2

2
1

eslles

Intersections: 1!
D]

(L1 (L]



Gluing:
1) “Assign fixed point indices”

- The Ej’s are “localized” in the singularities, named 11°, 12°) 32 ...

o3 03
C Y U YA
o1 o

for each E; we assign two extra indices: B

- D1 extends in the second torus and 1s localized in the first:
we assign an extra index: D}, similarly for Da: Di.

- The D’s are shared among various fixed points!

2) Include the inherited divisors:
- The R’s and D’s are linked, on the singular space: Ri~3D:.
- This link is the same for each of the D’ : Ry ~ 3D}, Ry ~ 3D}

- After resolutlon this linear equivalence is modlﬁed as

RZNSDJJrZ(E +2E7) R1~3D1+Z(E +2EY )




3) Compute the global set of intersections:
- Use of the local information
- Input on the intersection of the R’s
EVERY = §Pgi'e | EVEPY = EVEDY = —24%§i'Y
RiRy =3, RiR; = RRy =0, RiE™ = 0.

Outcome:
- Number of (1,1)-forms:
9 x 2 exceptional divisors
+ 2 x 3 “normal divisors™
— 2x 3 equivalences
+ 2 inherited divisors
= 20

- Characteristic classes (sylitting principle)
3 3 3

c(R)=(1+R)A+R) JT1+DY) TTA+DH T TT (1 +EV)(1 +EY)

=1 =1/ 1=1 5=1'
from linear equivalence and intersections:

(1 (R) =0, ca(R) = 24.




I - 10d SUGRA/SYM on the resolved CY:
U(1) gauge flux on the singularities



Consistency conditions
1) Flux quantization: / Fev7
.

2) Equations of motion/SUSY:
- F'must be a (1,1)-form, fulfilling the DUY condition

3) The Bianchi Identity for H must be fulfilled
/C (RAR—FAF)=0

In the language of divisors:
- ' can be written as F'= F; VI H!
- E; the localized (1,1)-forms (flux invisible in blow-down)
- H! elements in the Cartan algebra of SO(32) or Egx Eg
- Quantization: Vi! must be integers (half-integers)
- E.o.m.: conditions on the Kaehler moduli
- Bianchi Identity: use the splitting principle and the intersections
model dependent conditions



Ex: C3 / Z4
1) Informations on the (local) geometry:
Set of divisors: D1, D2, D3, Eq, Eo
Linear equivalences: 4 D1+ Ei1 + 2 Eo ~ 0,
4 D>+ Ei1+ 2 E» NO 2 D3+ Eq1~ 0.
Intersections: E12 B, = O Ezz Eq = O E 8 E23 = 2.

2
Chern classes: ¢(R) = H 1+ D;) H
1=1 j=1

3) Flux: F'=FE; VI H! + E, V2 H!

4) Consistency conditions
- Quantization: the V’s must be integer (halt-integer)

- Bianchi Identity on the compact 4-cycle Ex:
3 2

/ (RAR—-FAF)=E (H(1+D¢) H(1+E@-)> —E.F*=0
Ly i=1 j=1 9
using the intersection numbers: VIV +VIVZ= 4
- Bianchi Id. on the non-compact 4-cycle Ea: VIVZ = -2
- Bianchi Id. on the sub-vatriety C*/Zy: V?V2 =0



Matching the orbifold models

orbifold blowup blowup orbifold blowup blowup
shift 4 v vector V5 vector Vj Nr. shift 4 v vector V5 vector Vj Nr.
(0137 127 2) (0137 127 2) (0137 127_2) la (057 1107 2) (0107 16) %(_37 1107_15) 9
09,122 0'2,2,-1,0) | 1b 3 110 o3 10 16 10112 13
(13 9 ) (11 9 ) (O 71 72) (O 71) 5(1 7_1 7_3) 10
(0*°,14,2) (0*,2,1,0°,-1) | 1c - ; o
14 92 2,1 (115 - 11
0 |ty o) |2 | @D 0
(113,-1,22) | (013,12,2) L1 -3) 12a
(0*,1%,2)  (0™,1%,-2,0%) | 2b " o 2\t
(013,1%2,2)  -2(-3,1%) | 12b
(07,12,2%) | (0'%,1%,2)  (0%,1°,0°-1) | 3a
(013,12,2)  (0°,14-12,0) | 3b 1(13,312.:3) | 1(-3,119) -(013,12,2) | 13a
1(115.-3) (013,12,2) | 13b
(07,12,27) - - 4 |
T $(11:3)  L(13-113,1) | 13c
(010716) (010716) (0107127'14) Ha %(17 38 _3) %(115 _3) (_15 1 010) 144,
10 6 13 Y Y Y Y Y
(O ;1 ) (O 717_17_2) 5b %(115’_3) %(16,_187_371) 14b
10 15 10 16 9 2 4
(O ;1 73) (O ;1 ) (O ,2,-1%,0 ) 6 %(1117347_3) %(115’_3) (010’13’_13) 15
8 16 92 10 16 8 13 13 02
(O 71 72 ) (O 71 ) (0 71 7'1 70 ) 7a 1(1157 3) %(115’_3) (013’_27 12) 162,
(00.16)  (0%,12,-2,05) | 7b || °
’ T 5(11%-3)  (-1'%,3,-1) | 16Db
(0°,1%,2%) | (0'%,1%) (0% 1%-1%,0%) |8




IIT - Results & Working plan

1) We show how to resolve all the C*/Zy, and C*/Zmx Z;,
singularities, how to wrap U(1) flux on them and match
heterotic orbifold models.

- Recover and extend the results of Groot Nibbelink, MT, Walter
(C*/Z, singularities)

2) The new approach (toric geometry) allows to glue the

singularities and recover compact T?/Zy and T?/Zmx Zy,
orbifolds.

3) Study of compact heterotic models
- done the T®/Z3 model.
Groot Nibbelink, Klevers, Ploger, M'T, Vaudrevenge
- work in progress: the K3 models

- reobtain the results of Honecker, MT with explicit
control on the line bundles

- tool for a study of Heterotic/ITA duality
- next step: the phenomenologically appealing T®/Ze.;1 model




