Toric resolution of Heterotic orbifolds

Michele Trapletti

LPT - Université Paris-Sud 11, CPHT - École Polytechnique

UNIVERSITE
PARIS-SUD 11

Based on:
hep-th/0707.1597 - PRD 77:026002 2008

+ work in progress

In collaboration with: Stefan Groot Nibbelink

Tae Won Ha

Introduction I: Motivations

Two main different paths to heterotic string phenomenology

Reproduce the orbifold models as compactifications of 10d SUGRA/SYM in the presence of gauge fluxes

Introduction II: the Spirit

I - Resolve the orbifold geometry

Ia - Given the orbifold

Ib - Cut apart each singularity and resolve it: characterize the local geometric structure "hidden" in the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved singularities: characterize the topology of the whole CY space (non-localized cycles)

Get a smooth compact CY space (having the original orbifold as singular limit)

II - Compactify 10d SUGRA/SYM on the smooth CY

- A crucial detail:

Orbifold models:
Orbifold action g embedded in the gauge degrees of freedom.

The freedom in doing this generates a vast set of models!

SUGRA models:
U(1) gauge flux wrapped on

the new localizes cycles, to be embedded in $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$.
The freedom in the embedding generates a vast set of models
Reproduce each string orbifold model as a
compactification of 10d SUGRA + SYM on a smooth CY embedding the "right" gauge flux

Introduction III - Outline

1) Getting the smooth CY space

- Basic facts in complex/toric geometry.
- Resolution of orbifold singularities using toric geometry
- Gluing of the resolved singularities
- A specific example: resolution of T^{4} / Z_{3}

2) 10d SUGRA on the smooth CY space - only local study

- Consistency conditions (flux quantization, SYM e.o.m, ...)
- A specific example: \mathbf{C}^{3} / Z_{4} models

3) Results and working plan

I - Resolution of Toroidal orbifolds using toric geometry

Lust, Reffert, Scheidegger, Stieberger ‘07

Basic facts in complex/toric geometry

Divisors

- Given a complex n-dim space (parameters z^{i}) a divisor X is locally an analytic hypersurface (e.g. $z^{1}=0$).
- To each divisor X we can associate a complex line bundle.

Linear equivalence

- Given two divisors X and Y we say that they are equivalent $\mathrm{X} \sim \mathrm{Y}$ if the associated line bundles differ by a trivial one.
- The set of divisors corresponds, modulo linear equivalence, to the (1,1)-forms on the space.

Intersection of divisors

- An intersection of divisors defines curves in the space.
- Intersecting n divisors we get points, the intersecting number $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}=\mathrm{p}$ means that the hypersurface X_{1} intersects the curve $\mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ in p points (or that X_{2} intersects ...).
- Equivalently, we can read $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}=\mathrm{p}$ as the integral of the (1,1)-form X_{1} on $\mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ (or the integral of X_{2} on \ldots).

Resolution of local singularities

- Each singularity (we treat) has form $\mathbf{C}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}}$, with parameters z^{i}.
- Before resolution, the space has n divisors D_{i}, the surfaces $z^{i}=0$.
- The singularity is resolved adding new exceptional divisors, E's to the set of D's.
- These exceptional divisors are not unrelated to the old ones: there are n linear relations $D_{i} \sim a_{i j} E_{j}$.
- In the resolution some basic intersection numbers are fixed by the procedure, the others can be re-obtained using the linear equivalence.

Gluing together the singularities into $\mathrm{T}^{2 \mathrm{n}} / \mathrm{Z}_{\mathrm{m}}$

- Each resolved singularity is equipped with
- a set of divisors $\left\{\mathrm{D}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right\}$;
- a set of linear equivalences $D_{i} \sim a_{i j} E_{j}$;
- the local intersection numbers.
- Gluing:
-"put together" the divisors in a single set
- "put together" the linear equivalences in a single set
- compute the intersections among the various divisors.

Caveats

1) There are extra (1,1)-forms/divisors inherited from $T^{2 n}: R_{i}$.
2) Some of the divisors (all R's and D's, some of the E's) extend in planes in the orbifold: they are "shared" by different singularities.
T^{4} / Z_{2} example: the divisors D_{1} corresponding to the surface $z_{1}=0$ extends along z_{2} and is shared among the 4 singularities ($0, \mathrm{x}$).

Example I: K3 as a T^{4} / Z_{3} orbifold

- $\mathbf{T}^{4}=\mathbf{T}^{2} \times \mathbf{T}^{2}$, complex coordinates $\mathrm{z}_{1}, \mathrm{z}_{2}$.
$-Z_{3}$ has 3×3 equivalent fixed points (singularities).

Local information:

- Each singularity has form $\mathbf{C}^{2} / \mathbf{Z}_{3}$, with 2 divisors (pre-resolution):
D_{1} corresponding to $\mathrm{z}^{1}=0$ (fills the second \mathbf{C}-plane)
D_{2} corresponding to $\mathrm{z}^{2}=0$ (fills the first \mathbf{C}-plane)
- Resolution: add two exceptional divisors E_{1} and E_{2}.

Linear equivalences: $0 \sim 3 \mathrm{D}_{1}+\mathrm{E}_{1}+2 \mathrm{E}_{2}$

$$
0 \sim 3 \mathrm{D}_{2}+\mathrm{E}_{2}+2 \mathrm{E}_{1}
$$

Intersections: $\mathrm{D}_{1} \mathrm{E}_{2}=\mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{E}_{1} \mathrm{D}_{2}=1$

$$
\mathrm{D}_{1} \mathrm{E}_{1}=\mathrm{D}_{2} \mathrm{E}_{2}=0 \quad \mathrm{E}_{1} \mathrm{E}_{1}=\mathrm{E}_{2} \mathrm{E}_{2}=-2
$$

Gluing:

1) "Assign fixed point indices"

- The Eis are "localized" in the singularities, named 11', 12', 32', ...

for each E_{i} we assign two extra indices: $\mathrm{E}_{\mathrm{i}}^{\mathrm{j}{ }^{\prime}}$.
- D_{1} extends in the second torus and is localized in the first: we assign an extra index: D_{1}^{i}, similarly for $\mathrm{D}_{2}: \mathrm{D}_{2}^{\mathrm{j}^{\prime}}$.
- The D's are shared among various fixed points!

2) Include the inherited divisors:

- The R's and D's are linked, on the singular space: $\mathrm{R}_{\mathrm{i}} \sim 3 \mathrm{D}_{\mathrm{i}}$.
- This link is the same for each of the D's : $\mathrm{R}_{1} \sim 3 \mathrm{D}_{1}^{\mathrm{i}}, \mathrm{R}_{2} \sim 3 \mathrm{D}_{2}^{\mathrm{j}^{\prime}}$
- After resolution this linear equivalence is modified as

$$
\mathrm{R}_{2} \sim 3 \mathrm{D}_{2}^{\mathrm{j}^{\prime}}+\sum_{\mathrm{i}=1}^{3}\left(\mathrm{E}_{2}^{\mathrm{ij}^{\prime}}+2 \mathrm{E}_{1}^{\mathrm{ij}}\right), \mathrm{R}_{1} \sim 3 \mathrm{D}_{1}^{\mathrm{i}}+\sum_{\mathrm{j}^{\prime}=1^{\prime}}^{3^{\prime}}\left(\mathrm{E}_{1}^{\mathrm{ij}}+2 \mathrm{E}_{2}^{\mathrm{ij} \mathrm{i}^{\prime}}\right)
$$

3) Compute the global set of intersections:

- Use of the local information
- Input on the intersection of the R's
$\mathrm{E}_{1}^{\mathrm{ij}} \mathrm{E}_{2}^{\mathrm{pq}}=\delta^{\mathrm{ip}} \delta^{\mathrm{j}^{\prime} \mathrm{q}^{\prime}}, \quad \mathrm{E}_{1}^{\mathrm{ij}} \mathrm{E}_{1}^{\mathrm{pq}}=\mathrm{E}_{2}^{\mathrm{ij}} \mathrm{E}_{2}^{\mathrm{pq}}{ }^{\prime}=-2 \delta^{\mathrm{ip}} \delta^{j^{\prime} \mathrm{q}^{\prime}}$,
$\mathrm{R}_{1} \mathrm{R}_{2}=3, \quad \mathrm{R}_{1} \mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{R}_{2}=0, \mathrm{R}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}^{\mathrm{pq}}=0$.
Outcome:
- Number of (1,1)-forms:
9×2 exceptional divisors
$+2 \times 3$ "normal divisors"
-2×3 equivalences
$+\quad 2$ inherited divisors
$=20$
- Characteristic classes (splitting principle)
$c(\mathcal{R})=\left(1+\mathrm{R}_{1}\right)\left(1+\mathrm{R}_{2}\right) \prod_{i=1}^{3}\left(1+\mathrm{D}_{2}^{i}\right) \prod_{j^{\prime}=1^{\prime}}^{3^{\prime}}\left(1+\mathrm{D}_{1}^{j^{\prime}}\right) \prod_{i=1}^{3} \prod_{j=1^{\prime}}^{3^{\prime}}\left(1+\mathrm{E}_{1}^{i j^{\prime}}\right)\left(1+\mathrm{E}_{2}^{i j^{\prime}}\right)$
from linear equivalence and intersections:

$$
c_{1}(\mathcal{R})=0, c_{2}(\mathcal{R})=24
$$

II - 10d SUGRA/SYM on the resolved CY: $\mathrm{U}(1)$ gauge flux on the singularities

Consistency conditions

1) Flux quantization: $\int_{\gamma} F \in Z$
2) Equations of motion/SUSY:

- F must be a (1,1)-form, fulfilling the DUY condition

3) The Bianchi Identity for H must be fulfilled

$$
\int_{C_{2}}(\mathcal{R} \wedge \mathcal{R}-F \wedge F)=0
$$

In the language of divisors:

- F can be written as $F=\mathrm{E}_{\mathrm{i}} \mathrm{V}^{\text {il }} \mathrm{H}^{\mathrm{I}}$
- E_{i} the localized (1,1)-forms (flux invisible in blow-down)
- H^{I} elements in the Cartan algebra of $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$
- Quantization: $\mathrm{V}_{\mathrm{i}}^{\mathrm{I}}$ must be integers (half-integers)
- E.o.m.: conditions on the Kaehler moduli
- Bianchi Identity: use the splitting principle and the intersections model dependent conditions

Ex: C^{3} / Z_{4}

1) Informations on the (local) geometry:

Set of divisors: $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \mathrm{E}_{1}, \mathrm{E}_{2}$
Linear equivalences: $4 \mathrm{D}_{1}+\mathrm{E}_{1}+2 \mathrm{E}_{2} \sim 0$,

$$
4 \mathrm{D}_{2}+\mathrm{E}_{1}+2 \mathrm{E}_{2} \sim 0,2 \mathrm{D}_{3}+\mathrm{E}_{1} \sim 0
$$

Intersections: $\mathrm{E}_{1}{ }^{2} \mathrm{E}_{2}=0, \mathrm{E}_{2}{ }^{2} \mathrm{E}_{1}=0, \mathrm{E}_{1}{ }^{3}=8, \mathrm{E}_{2}{ }^{3}=2$.
Chern classes: $c(\mathcal{R})=\prod_{i=1}^{3}\left(1+\mathrm{D}_{i}\right) \prod_{j=1}^{2}\left(1+\mathrm{E}_{i}\right)$
3) Flux: $F=\mathrm{E}_{1} \mathrm{~V}^{1 \mathrm{I}} \mathrm{H}^{\mathrm{I}}+\mathrm{E}_{2} \mathrm{~V}^{2 \mathrm{I}} \mathrm{H}^{\mathrm{I}}$
4) Consistency conditions

- Quantization: the V's must be integer (half-integer)
- Bianchi Identity on the compact 4-cycle E_{1} :
$\int_{E_{1}}(\mathcal{R} \wedge \mathcal{R}-F \wedge F)=\mathrm{E}_{1}\left(\prod_{i=1}^{3}\left(1+\mathrm{D}_{i}\right) \prod_{j=1}^{2}\left(1+\mathrm{E}_{i}\right)\right)_{2}-\mathrm{E}_{1} F^{2}=0$
using the intersection numbers: $\mathrm{V}^{1} \mathrm{~V}^{1}+\mathrm{V}^{1} \mathrm{~V}^{2}=4$
- Bianchi Id. on the non-compact 4-cycle $\mathrm{E}_{2}: \mathrm{V}^{1} \mathrm{~V}^{2}=-2$
- Bianchi Id. on the sub-variety $\mathbf{C}^{2} / \mathbf{Z}_{2}: V^{2} V^{2}=6$

Matching the orbifold models

orbifold shift $4 v$	blowup vector V_{2}	blowup vector V_{1}	Nr.	orbifold shift $4 v$	blowup vector V_{2}	blowup vector V_{1}	Nr.	
$\left(0^{13}, 1^{2}, 2\right)$	$\begin{array}{cc} \hline \hline\left(0^{13}, 1^{2}, 2\right) & \left(0^{13}, 1^{2},-2\right) \\ \left(0^{13}, 1^{2}, 2\right) & \left(0^{12}, 2,-1^{2}, 0\right) \\ \left(0^{13}, 1^{2}, 2\right) & \left(0^{11}, 2,1,0^{2},-1\right) \end{array}$		1a 1b 1c	$\left(0^{5}, 1^{10}, 2\right)$	$\left(0^{10}, 1^{6}\right)$	$\frac{1}{2}\left(-3,1^{10},-1^{5}\right)$	9	
			$\left(0^{3}, 1^{10}, 2^{3}\right)$	$\left(0^{10}, 1^{6}\right)$	$\frac{1}{2}\left(1^{12},-1^{3},-3\right)$	10		
			$\left(1^{14}, 2^{2}\right)$	$\left(0^{13},-2,1^{2}\right)$	$\frac{1}{2}\left(1^{15},-3\right)$	11		
$\left(0^{11}, 1^{2}, 2^{3}\right)$	$\begin{aligned} & \left(0^{13}, 1^{2}, 2\right) \\ & \left(0^{13}, 1^{2}, 2\right) \end{aligned}$	$\begin{gathered} \left(0^{10}, 1^{4},-1^{2}\right) \\ \left(0^{11}, 1^{2},-2,0^{2}\right) \end{gathered}$		$\begin{aligned} & 2 \mathrm{a} \\ & 2 \mathrm{~b} \end{aligned}$	$\left(1^{13},-1,2^{2}\right)$	$\begin{aligned} & \left(0^{13}, 1^{2}, 2\right) \\ & \left(0^{13}, 1^{2}, 2\right) \end{aligned}$	$\begin{gathered} \frac{1}{2}\left(1^{15},-3\right) \\ -\frac{1}{2}\left(-3,1^{15}\right) \end{gathered}$	$\begin{aligned} & 12 \mathrm{a} \\ & 12 \mathrm{~b} \end{aligned}$
$\left(0^{9}, 1\right.$		$\left(0^{8}, 1^{5}, 0^{2},-1\right)$		3 a				
	$\left(0^{13}, 1^{2}, 2\right)$	$\left(0^{9}, 1^{4},-1^{2}, 0\right)$	3 b	$\frac{1}{2}\left(1^{3}, 3^{12},-3\right)$	$\begin{aligned} & \frac{1}{2}\left(-3,1^{15}\right) \\ & \frac{1}{2}\left(1^{15},-3\right) \\ & \frac{1}{2}\left(1^{15},-3\right) \end{aligned}$	$\begin{gathered} -\left(0^{13}, 1^{2}, 2\right) \\ \left(0^{13}, 1^{2}, 2\right) \\ \frac{1}{2}\left(1^{3},-1^{11}, 3,1\right) \end{gathered}$	$\begin{aligned} & 13 \mathrm{a} \\ & 13 \mathrm{~b} \\ & 13 \mathrm{c} \end{aligned}$	
$\left(0^{7}, 1^{2}, 2^{7}\right)$	-	-	4					
$\left(0^{10}, 1^{6}\right)$	$\begin{aligned} & \left(0^{10}, 1^{6}\right) \\ & \left(0^{10}, 1^{6}\right) \end{aligned}$	$\begin{aligned} & \left(0^{10}, 1^{2},-1^{4}\right) \\ & \left(0^{13}, 1,-1,-2\right) \end{aligned}$	$\begin{aligned} & 5 \mathrm{a} \\ & 5 \mathrm{~b} \end{aligned}$	$\frac{1}{2}\left(1^{7}, 3^{8},-3\right)$	$\begin{aligned} & \frac{1}{2}\left(1^{15},-3\right) \\ & \frac{1}{2}\left(1^{15},-3\right) \end{aligned}$	$\begin{gathered} \left(-1^{5}, 1,0^{10}\right) \\ \frac{1}{2}\left(1^{6},-1^{8},-3,1\right) \end{gathered}$	$\begin{aligned} & 14 \mathrm{a} \\ & 14 \mathrm{~b} \end{aligned}$	
$\left(0^{10}, 1^{5}, 3\right)$	$\left(0^{10}, 1^{6}\right)$	$\left(0^{9}, 2,-1^{2}, 0^{4}\right)$	6	$\frac{1}{2}\left(1^{11}, 3^{4},-3\right)$	$\frac{1}{2}\left(1^{15},-3\right)$	$\left(0^{10}, 1^{3},-1^{3}\right)$	15	
$\left(0^{8}, 1^{6}, 2^{2}\right)$	$\begin{aligned} & \left(0^{10}, 1^{6}\right) \\ & \left(0^{10}, 1^{6}\right) \end{aligned}$	$\begin{gathered} \left(0^{8}, 1^{3},-1^{3}, 0^{2}\right) \\ \left(0^{8}, 1^{2},-2,0^{5}\right) \end{gathered}$	$\begin{aligned} & 7 \mathrm{a} \\ & 7 \mathrm{~b} \end{aligned}$	$\frac{1}{2}\left(1^{15},-3\right)$	$\begin{aligned} & \frac{1}{2}\left(1^{15},-3\right) \\ & \frac{1}{2}\left(1^{15},-3\right) \end{aligned}$	$\begin{gathered} \left(0^{13},-2,1^{2}\right) \\ \frac{1}{2}\left(-1^{14}, 3,-1\right) \end{gathered}$	$\begin{aligned} & 16 \mathrm{a} \\ & 16 \mathrm{~b} \end{aligned}$	
$\left(0^{6}, 1^{6}, 2^{4}\right)$	$\left(0^{10}, 1^{6}\right)$	$\left(0^{6}, 1^{4},-1^{2}, 0^{4}\right)$	8					

III - Results \& Working plan

1) We show how to resolve all the $\mathbf{C}^{n} / \mathbf{Z}_{\mathrm{m}}$ and $\mathbf{C}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}} \mathbf{x} \mathbf{Z}_{\mathbf{p}}$ singularities, how to wrap $\mathrm{U}(1)$ flux on them and match heterotic orbifold models.

- Recover and extend the results of Groot Nibbelink, MT, Walter ($\mathbf{C}^{\mathrm{n}} / \mathrm{Z}_{\mathrm{n}}$ singularities)

2) The new approach (toric geometry) allows to glue the singularities and recover compact $\mathbf{T}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}}$ and $\mathbf{T}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}} \mathbf{x} \mathbf{Z}_{\mathrm{p}}$ orbifolds.
3) Study of compact heterotic models

- done the \mathbf{T}^{6} / Z_{3} model.

Groot Nibbelink, Klevers, Ploger, MT, Vaudrevenge

- work in progress: the K3 models
- reobtain the results of Honecker, MT with explicit control on the line bundles
- tool for a study of Heterotic/IIA duality
- next step: the phenomenologically appealing $\mathbf{T}^{6} / \mathbf{Z}_{6 \text {-II }}$ model

