$Z_2 \times Z_2$ orientifolds of non factorisable tori

Cristina Timirgaziu

University of Liverpool

Stefan Forste, CT, Ivonne Zavala JHEP 0710:025 (2007)

Stefan Forste, Radu Tatar, CT, Ivonne Zavala work in progress

Summary

- 1. Factorisable versus non factorisable $Z_2 \times Z_2$ orbifolds.
- 2. $Z_2 \times Z_2$ orientifolds with branes at angles.
- 3. The non factorisable case.
- 4. The case with discrete torsion fractional branes.
- 5. Conclusions.

$Z_2 \times Z_2$ orbifolds

Factorisable tori:

$$T^6 = T^2 imes T^2 imes T^2 \ heta_1 = (+ \; , \; - \; , \; -) \ heta_2 = (- \; , \; - \; , \; +)$$

$$e_1 = (\mathbf{x}, \mathbf{x}, 0, 0, 0, 0)$$

$$e_2 = (\mathbf{x}, \mathbf{x}, 0, 0, 0, 0)$$

$$e_3 = (0, 0, \frac{\mathbf{x}}{\mathbf{x}}, \frac{\mathbf{x}}{\mathbf{x}}, 0, 0)$$

$$e_4 = (0, 0, \frac{\mathbf{x}}{\mathbf{x}}, \frac{\mathbf{x}}{\mathbf{x}}, 0, 0)$$

$$e_5 = (0, 0, 0, 0, \mathbf{x}, \mathbf{x})$$

$$e_6 = (0, 0, 0, 0, \frac{\mathbf{x}}{\mathbf{x}}, \frac{\mathbf{x}}{\mathbf{x}})$$

Non-factorisable tori: $T^6 \neq T^2 \times T^2 \times T^2$

$$\left(egin{array}{c} x^1 \ dots \ x^6 \end{array}
ight)
ightarrow heta_{1,2} \left(egin{array}{c} x^1 \ dots \ x^6 \end{array}
ight), \ heta_1 = \left(egin{array}{ccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 0 & -1 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ \end{array}
ight), heta_2 = \left(egin{array}{ccccccccc} -1 & 0 & 0 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 & 0 & 0 \ 0 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & -1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ \end{array}
ight)$$

$Z_2 \times Z_2$ orientifolds

$$T^6/Z_2 imes Z_2 imes \Omega R, \quad R: x_{1,3,5} o x_{1,3,5}, \ x_{2,4,6} o -x_{2,4,6}$$

Four types of O6-planes: invariant under ΩR , $\Omega R\theta_1$, $\Omega R\theta_2$ and $\Omega R\theta_1\theta_2$.

$$egin{aligned} \Omega R : rac{ ext{vol}\left(\Lambda_{\mathcal{R},\perp}
ight)}{ ext{vol}\left(\Lambda_{-\mathcal{R},inv}
ight)} \cdot 32^2 \ + \ rac{ ext{vol}\left(\Lambda_{\mathcal{R},inv}
ight)}{ ext{vol}\left(\Lambda_{-\mathcal{R},\perp}
ight)} \cdot N^2 - 2 \cdot N \cdot 32 \cdot rac{ ext{vol}\left(\Lambda_{-\mathcal{R},inv}
ight)}{ ext{vol}\left(\Lambda_{\mathcal{R},inv}
ight)} = 0 \end{aligned}$$

Introduce D6-branes for tadpole cancellation. D6-branes non parallel to the O6-planes give rise to chiral spectra.

The factorisable case. One-cycles:

$$egin{align} [a_1] &= (extbf{1}, 0, 0, 0, 0, 0) & [b_1] &= (0, extbf{1}, 0, 0, 0, 0, 0) \ [a_2] &= (0, 0, extbf{1}, 0, 0, 0) & [b_2] &= (0, 0, 0, extbf{1}, 0, 0) \ [a_3] &= (0, 0, 0, 0, extbf{1}, 0) & [b_3] &= (0, 0, 0, 0, 0, extbf{1}) \ \end{align*}$$

Orbifold invariant branes:

$$egin{aligned} D6_a &= \left(m_a^1, n_a^1, 0, 0, 0, 0
ight) imes \left(0, 0, m_a^2, n_a^2, 0, 0
ight) imes \left(0, 0, 0, 0, m_a^3, n_a^3
ight) \ &= \left(m_a^1\left[a_1\right] + n_a^1\left[b_1
ight]
ight) imes \left(m_a^2\left[a_2\right] + n_a^2\left[b_2
ight]
ight) imes \left(m_a^3\left[a_3\right] + n_a^3\left[b_3
ight]
ight) \end{aligned}$$

R-images, $D6_{a'}$: $n_a \rightarrow -n_a$

Consistency conditions

RR tadpole cancellation conditions

$$egin{aligned} \sum_a N_a m_a^1 m_a^2 m_a^3 - 16 = 0 \ \sum_a N_a m_a^1 n_a^2 n_a^3 + 16 = 0 \ \sum_a N_a n_a^1 m_a^2 n_a^3 + 16 = 0 \ \sum_a N_a n_a^1 n_a^2 m_a^3 + 16 = 0 \end{aligned}$$

$\mathcal{N} = 1$ supersymmetry

$$\mathcal{N}=2 \xrightarrow{10D o 4D} \mathcal{N}=8 \xrightarrow{Z_2 imes Z_2} \mathcal{N}=2 \xrightarrow{\Omega} \mathcal{N}=1$$

The branes must preserve $\mathcal{N}=1$ supersymmetry:

$$rctan\left(rac{m_1}{n_1}
ight)+rctan\left(rac{m_2}{n_2}
ight)+rctan\left(rac{m_3}{n_3}
ight)=0$$

Non-factorisable example: SO(12)

$$egin{aligned} e_1 &= \; (1,-1,0,0,0,0) \,, \ e_2 &= \; (0,1,-1,0,0,0) \,, \ e_3 &= \; (0,0,1,-1,0,0) \,, \ e_4 &= \; (0,0,0,1,-1,0) \,, \ e_5 &= \; (0,0,0,0,1,-1) \,, \ e_6 &= \; (0,0,0,0,1,1) \,. \end{aligned}$$

$$egin{aligned} D6_a &= \left(m_a^1 \left[a_1
ight] + n_a^1 \left[b_1
ight]
ight) imes \left(m_a^2 \left[a_2
ight] + n_a^2 \left[b_2
ight]
ight) imes \left(m_a^3 \left[a_3
ight] + n_a^3 \left[b_3
ight]
ight) \ &= \left(m_a^1 e_1 + \left(m_a^1 + n_a^1
ight) \left(e_2 + e_3 + e_4 + rac{1}{2}e_5 + rac{1}{2}e_6
ight)
ight) imes \ &\left(m_a^2 e_3 + \left(m_a^2 + n_a^2
ight) \left(e_4 + rac{1}{2}e_5 + rac{1}{2}e_6
ight)
ight) imes \left(rac{m_a^3}{2} \left(e_5 + e_6
ight) + rac{n_a^3}{2} \left(e_6 - e_5
ight)
ight) \end{aligned}$$

$$egin{aligned} O_{\Omega\mathcal{R}} &= (1,0,\text{-}1,0,0,0) imes (0,0,1,0,\text{-}1,0) imes (0,0,1,0,1,0) = 2 \, [a_1] imes [a_2] imes [a_3] \,, \ O_{\Omega\mathcal{R} heta} &= (0,1,0,1,0,0) imes (0,0,0,\text{-}1,\text{-}1,0) imes (0,0,0,\text{-}1,1,0) = -2 \, [b_1] imes [b_2] imes [a_3] \,, \ O_{\Omega\mathcal{R} heta} &= (1,0,0,\text{-}1,0,0) imes (0,0,0,1,0,1) imes (0,0,0,1,0,\text{-}1) = -2 \, [a_1] imes [b_2] imes [b_3] \,, \ O_{\Omega\mathcal{R} heta heta} &= (0,1,\text{-}1,0,0,0) imes (0,0,1,0,0,1) imes (0,0,1,0,0,\text{-}1) = -2 \, [b_1] imes [a_2] imes [b_3] \,. \end{aligned}$$

Intersection number

Intersecting number of a stack $D6_a$ and a stack $D6_b =$ Jacobian(lattice where the D-branes intersect once \longrightarrow compactification lattice)

Depends on the lattice!

$$I_{ab} = \det egin{pmatrix} m_a^1 & n_a^1 & 0 & 0 & 0 & 0 \ m_b^1 & n_b^1 & 0 & 0 & 0 & 0 \ 0 & 0 & m_a^2 & n_a^2 & 0 & 0 \ 0 & 0 & m_b^2 & n_b^2 & 0 & 0 \ 0 & 0 & 0 & 0 & m_a^3 & n_a^3 \ 0 & 0 & 0 & 0 & m_b^3 & n_b^3 \end{pmatrix} = \prod_{i=1}^3 \left(m_a^i n_b^i - n_a^i m_b^i
ight)$$

Model building rules

Gauge group factors:

- N D6-branes not parallel to an O6-plane $\rightsquigarrow U(N/2)$.
- N D6-branes parallel to an O6-plane $\rightsquigarrow USp(N)$.

Chiral spectrum (comes from strings stretched between branes tilted with respect to the O-planes):

- Strings stretching between the brane-stacks N_a and $N_b \rightsquigarrow I_{ab}$ multiplets in the $\left(\frac{N_a}{2}, \frac{\overline{N}_b}{2}\right)$ representation of $U\left(N_a/2\right) \times U\left(N_b/2\right)$.
- Strings stretching between the stack N_a and the \mathcal{R} -image $N_{b'} \rightsquigarrow I_{ab'}$ multiplets in the $\left(\frac{N_a}{2}, \frac{N_{b'}}{2}\right)$ representation of $U\left(N_a/2\right) \times U\left(N_{b'}/2\right)$.
- Strings stretching between the stack N_a and its \mathcal{R} image, $N_{a'}$, $\Rightarrow \frac{1}{2} \left(I_{aa'} + 4 I_{aO6} \right)$ multiplets in the anti-symmetric representation and $\frac{1}{2} \left(I_{aa'} 4 I_{aO6} \right)$ in the symmetric representation of $U \left(N_a/2 \right)$.

Getting the Standard Model:

Total number of families = $I_{ab} + I_{ab'}$.

If the stack $D6_a$ generates the U(3) gauge group and the stack $D6_b$ gives the U(2) gauge group, in order to have three copies of the (3,2) representation of $SU(3) \times SU(2)$ we need either

- (i) $I_{ab} = 3$ and $I_{ab'} = 0$ or
- (ii) $I_{ab} = 2$ and $I_{ab'} = 1$

The factorisable case

$$egin{aligned} I_{ab} &= \prod_{i=1}^3 (m_a^i n_b^i - n_a^i m_b^i) \ I_{ab'} &= -\prod_{i=1}^3 (m_a^i n_b^i + n_a^i m_b^i) \end{aligned}$$

One tilted torus:

$$egin{aligned} ext{One tilted torus:} \ e_1 &= (1,-1,0,0,0,0) \ e_2 &= (1,1,0,0,0,0) \ e_3 &= (0,0,1,0,0,0) \ e_4 &= (0,0,0,1,0,0) \ e_5 &= (0,0,0,0,0,1,0) \ e_6 &= (0,0,0,0,0,1) \end{aligned} egin{aligned} I_{ab} &= \det egin{aligned} rac{m_a^1 - n_a^1}{2} & rac{m_a^1 + n_a^1}{2} & 0 & 0 & 0 & 0 \ rac{m_b^1 - n_b^1}{2} & rac{m_b^1 + n_b^1}{2} & 0 & 0 & 0 & 0 \ 0 & 0 & m_a^2 & n_a^2 & 0 & 0 \ 0 & 0 & m_b^2 & n_b^2 & 0 & 0 \ 0 & 0 & 0 & 0 & m_a^3 & n_a^3 \ 0 & 0 & 0 & 0 & m_b^3 & n_b^3 \ \end{pmatrix} \\ &= rac{1}{2} \prod_{i=1}^3 \left(m_a^i n_b^i - n_a^i m_b^i
ight) \end{aligned}$$

$$egin{align} D6_a &= \left(m_a^1 \left[a_1
ight] + n_a^1 \left[b_1
ight]
ight) imes \left(m_a^2 \left[a_2
ight] + n_a^2 \left[b_2
ight]
ight) imes \left(m_a^3 \left[a_3
ight] + n_a^3 \left[b_3
ight]
ight) \ &= \left(rac{m_a^1}{2} \left(e_1 + e_2
ight) + rac{n_a^1}{2} \left(e_2 - e_1
ight)
ight) imes \left(m_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes \left(m_a^3 \left(e_5 + n_a^3 \left(e_6
ight) imes e_6
ight)
ight) \ &= \left(m_a^1 \left(e_1 + e_2
ight) + rac{n_a^1}{2} \left(e_2 - e_1
ight)
ight) imes \left(m_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes \left(m_a^3 \left(e_5 + n_a^3 \left(e_6
ight) imes e_6
ight)
ight) \ &= \left(m_a^1 \left(e_1 + e_2
ight) + rac{n_a^1}{2} \left(e_2 - e_1
ight)
ight) imes \left(m_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes \left(m_a^3 \left(e_5 + n_a^3 \left(e_6
ight) imes e_6
ight)
ight) \ &= \left(m_a^1 \left(e_1 + e_2
ight) + rac{n_a^1}{2} \left(e_2 - e_1
ight)
ight) imes \left(m_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes \left(m_a^3 \left(e_5 + n_a^3 \left(e_6
ight) imes e_6
ight)
ight) \ &= \left(m_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes e_6
ight)
ight) \ &= \left(m_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes e_6
ight)
ight) \ &= \left(m_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2 \left(e_4
ight) imes e_6
ight)
ight) \ &= \left(m_a^2 \left(e_3 + n_a^2 \left(e_3 + n_a^2$$

Closed cycles condition: $m_a^1 + n_a^1 = \text{even}$ (if not then wrap twice)

- $ullet m_{a,b}^1, \ n_{a,b}^1 = \operatorname{odd} \longrightarrow \operatorname{factor} \operatorname{of} \mathbf{2} \operatorname{in} I_{ab}$
- $m_{a,b}^1$, $n_{a,b}^1 = \text{even} \longrightarrow \text{factor of 4 in } I_{ab}$

Examples with three generations on factorisable lattices

Case	Stack	N_a	$oxed{m_a^1}$	n_a^1	m_a^2	n_a^2	m_a^3	n_a^3
$I_{ab}=2$	$oldsymbol{a}$	6	3	1	1	-1	1	0
$I_{ab'}=1$	\boldsymbol{b}	4	1	1	1	0	1	-1
$I_{ab}=3$	a	6	1	1	0	-1	1	1
$I_{ab'}=0$	b	4	1	-1	3	1	1	0

Non factorisable tori

$$egin{align} e_1 &= (extbf{1},0,- extbf{1},0,0,0) \ e_2 &= (0, extbf{1},0,0,0,0) \ e_3 &= (extbf{1},0, extbf{1},0,0,0) \ e_4 &= (0,0,0, extbf{1},0,0) \ e_5 &= (0,0,0,0, extbf{1},0) \ e_6 &= (0,0,0,0,0, extbf{1}) \ \end{array}$$
 $I_{ab} = rac{1}{2} \prod_{i=1}^3 \left(m_a^i n_b^i - n_a^i m_b^i
ight) \ e_5 &= (0,0,0,0,0,1) \ \end{array}$

$$D6_a = \left(rac{m_a^1}{2}\;(e_1+e_3) + n_a^1\;e_2
ight) imes \left(rac{m_a^2}{2}\;(e_3-e_1) + n_a^2\;e_4
ight) imes \left(m_a^3\;e_5 + n_a^3\;e_6
ight)$$

Closed cycles condition: $m_a^1, m_a^2 = \text{even}$

Each condition gives a factor of 2, hence we get a factor of 4 in I_{ab} .

Idea: $m_a^1, m_a^2 = \text{even and } m_b^1, m_b^2 = \text{odd and wrap twice cycle } D6_b.$

₩

factor of 2. One can get $I_{ab} = \text{odd}$, but $I_{ab'}$ will be odd as well.

Keep conditions in the form $m_a^1 + n_a^1 = \text{even}$

$$e_{1} = (1, -1, 0, 0, 0, 0)$$

$$e_{2} = (0, 1, -1, 0, 0, 0)$$

$$e_{3} = (0, 1, 1, 0, 0, 0)$$

$$e_{4} = (0, 0, 0, 1, 0, 0)$$

$$e_{5} = (0, 0, 0, 0, 1, 0)$$

$$e_{6} = (0, 0, 0, 0, 0, 1)$$

$$D6_{a} = \left(m_{a}^{1} \left(e_{1} + \frac{e_{2} + e_{3}}{2}\right) + \frac{n_{a}^{1}}{2} \left(e_{2} + e_{3}\right)\right) \times \left(\frac{m_{a}^{2}}{2} \left(e_{3} - e_{2}\right) + n_{a}^{2} e_{4}\right) \times \left(m_{a}^{3} e_{5} + n_{a}^{3} e_{6}\right)$$

$$Conditions: m_{a}^{1} + n_{a}^{1} = \text{even}, m_{a}^{2} = \text{even}$$

..again too many factors of 2

Different orientifold action

$$\mathcal{R}:~z^1 o \mathrm{i}\overline{z}^1,~z^i o \overline{z}^i,~i=2,3$$

 \mathcal{R} image branes : $n \leftrightarrow m$

Interesting conditions are $m_a^i = \text{even}$, since $I_{ab'} \sim \prod_{i=1}^3 \left(m_a^i m_b^i - n_a^i n_b^i \right)$, but they are incompatible with \mathcal{R} .

Non-invariant branes:

$$e_1 = (1, 0, -1, 0, 0, 0)$$

 $e_2 = (0, 1, 0, 0, 0, 0)$
 $e_3 = (1, 0, 1, 0, 0, 0)$
 $e_4 = (0, 0, 0, 1, 0, 0)$
 $e_5 = (0, 0, 0, 0, 1, 0)$
 $e_6 = (0, 0, 0, 0, 0, 1)$

$$D6_a = (m_a^1, 0, n_a^1, 0, 0, 0) \times (0, m_a^2, 0, n_a^2, 0, 0) \times (0, 0, 0, 0, m_a^3, n_a^3)$$

 $I_{ab} + I_{ab'} = 3$ is possible, but supersymmetry is broken.

Outlook

 $Z_2 \times Z_2$ orientifolds with discrete torsion of non-factorisable lattices :

• Admits fractional branes, which might yield an odd number of families.

$$\Pi_a^F \,=\, \frac{1}{4}\,\Pi_a^B + \frac{1}{4}\left(\sum_{i,j\in S_\Theta^a} \epsilon_{a,ij}^\Theta\,\Pi_{ij,\,a}^\Theta\right) + \frac{1}{4}\left(\sum_{j,k\in S_{\Theta'}^a} \epsilon_{a,jk}^{\Theta'}\,\Pi_{jk,\,a}^{\Theta'}\right) + \frac{1}{4}\left(\sum_{i,k\in S_{\Theta\Theta'}^a} \epsilon_{a,ik}^{\Theta\Theta'}\,\Pi_{ik,\,a}^{\Theta\Theta'}\right)$$

- Admits rigid cycles.
- Extra (twisted) tadpole conditions.

Conclusions

 $Z_2 \times Z_2$ orientifolds of non-factorisable lattices with branes at angles :

- Admit chiral N = 1 models.
- Tadpoles conditions change according to the lattice.
- Gauge groups become smaller.
- Non-factorisable lattices \leadsto constraints on the wrapping numbers of the D6-branes \leadsto even intersection numbers \leadsto even number of families.
- Odd intersection numbers possible with non-invariant branes \leadsto supersymmetry is broken.

Other options:

- fractional branes
- shift orientifolds
- higher order orbifolds