

Topology-changing transitions with gravity

Paul Saffin, with Neil Butcher Nottingham University

JHEP 0711:062,2007

Talk outline

- moving around moduli space
- topological transitions and their consequences
- including gravity in cycle-collapses
- results
- conclusions

Moduli space motion

Higher dimensional perspective:

$$ds^2 = \mathrm{d}s_{us}^2 + a^2(x)\mathrm{d}\theta^2 + b^2(x)\mathrm{d}\phi^2 + \dots$$

Moduli space motion

Higher dimensional perspective:

$$ds^{2} = ds_{us}^{2} + a^{2}(x)d\theta^{2} + b^{2}(x)d\phi^{2} + \dots$$

Our perspective:

$$\mathcal{L} = R - \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} \partial_{\mu} b \partial^{\mu} b - \dots$$

Moduli space

Motion with constant topology:

- Betti numbers unchanged
- intersection numbers unchanged

Moduli space

Motion with changing topology:

Betti numbers changede.g. conifold transition

Conifold transition

$$ds^{2} = dr^{2} + r^{2} \left(d\Omega_{(2)} + d\Omega_{(3)} \right)$$

Regulating the transition

wrapped D-branes provide extra massless states which alter the effective theory

Strominger, Greene, Morrison, Vafa

Effective action

Use knowledge of effective theory to include extra degrees of freedom for the wrapped branes

For the conifold in IIB we find 4D N=2 sugra, with one hypermultiplet for each degenerating cycle.

$$= \mathcal{R} \star 1 - g_{i\bar{j}} dz^{i} \wedge \star dz^{\bar{j}} - h_{uv} Dq^{u} \wedge Dq^{v} \\ + \frac{1}{2} Im(\mathcal{N})_{IJ} F^{I} \wedge \star F^{J} - \frac{1}{2} Re(\mathcal{N})_{IJ} F^{I} \wedge F^{J} - \mathcal{V}(q, z)$$

Brandle, Greene, Jarv, Lukas, Mohaupt, Morrison, Palti, Saffin, Saueressig, Vafa

L

Dynamical consequences

Trapping at the transition point

U

W

q

40 time 60

20

0.6

0.4

0.2

0

IIB conifold: Lukas, Palti, Saffin

M-theory flop: Lukas, Brandle

• the cycle stops collapsing, then expands

- the cycle stops collapsing, then expands
- the cycle continues to collapse, classical geometry requires the formation of a curvature singularity

- the cycle stops collapsing, then expands
- the cycle continues to collapse, classical geometry requires the formation of a curvature singularity
 - does this create a naked singularity?
 - is a horizon formed?
 - what is the final state?

$$\begin{aligned} & \text{Cycle collapse - a simpler model} \\ & ds^2 = \alpha^{-1}(\rho)d\rho^2 + \frac{1}{4}\rho^2 \left[(\sigma_1^2 + \sigma_2^2) + \alpha(\rho)\sigma_3^2 \right] \\ & \alpha(\rho) = 1 - \left(\frac{L}{\rho}\right)^4 \qquad \text{Eguchi, Hanson} \\ & \text{two-cycle:} \quad \frac{\rho = L + \frac{R^2}{L}}{ds^2 \simeq dR^2 + R^2\sigma_3^2 + \frac{L^2}{4} \left(\sigma_1^2 + \sigma_2^2\right)} \end{aligned}$$

 $ds^{2} = -dt^{2} + a^{2}(t, r)dr^{2} + b^{2}(t, r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t, r)\sigma_{3}^{2}$

$$ds^{2} = -dt^{2} + a^{2}(t,r)dr^{2} + b^{2}(t,r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t,r)\sigma_{3}^{2}$$

apparent horizon:

 $\left. \frac{d}{dt} (area) \right|_{null\ ray} = 0$

$$ds^{2} = -dt^{2} + a^{2}(t,r)dr^{2} + b^{2}(t,r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t,r)\sigma_{3}^{2}$$

apparent horizon:

$$ds^{2} = -dt^{2} + a^{2}(t,r)dr^{2} + b^{2}(t,r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t,r)\sigma_{3}^{2}$$

apparent horizon: $\frac{d}{dt}(area)$

$$ds^{2} = -dt^{2} + a^{2}(t,r)dr^{2} + b^{2}(t,r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t,r)\sigma_{3}^{2}$$

apparent horizon:

 $\left. \frac{d}{dt} (area) \right|_{null\ ray} = 0$

Final state?

 $ds^{2} = -fdt^{2} + \frac{k^{2}}{f}dr^{2} + \frac{r^{2}}{4}\left[k(\sigma_{1}^{2} + \sigma_{2}^{2}) + \sigma_{3}^{2}\right]$ $f(r) = \frac{r^2 - r_+^2}{r^2}$ $k(r) = \frac{(r_{\infty}^2 - r_{+}^2)r_{\infty}^2}{(r_{\infty}^2 - r^2)^2}$

Gibbons, Maeda, Ishihara, Matsuno

<u>conclusions</u>

- branes can regulate the certain singularities
- can derive effective actions for topology changes using the moduli space approximation
- the moduli space approximation breaks down as cycles collapse
- event horizons can form from cycles collapsing
- cycle collapses give a novel form of dynamical compactification

Moduli space

- Betti numbers unchanged
- Intersection numbers changed
- e.g. flop transition

$$ds^{2} = -dt^{2} + a^{2}(t,r)dr^{2} + b^{2}(t,r)(\sigma_{1}^{2} + \sigma_{2}^{2}) + c^{2}(t,r)\sigma_{3}^{2}$$

apparent horizon:

 $\left. \frac{d}{dt} (area) \right|_{null\ ray} = 0$

