Moduli Stabilisation versus Chirality for MSSM like Type IIB Orientifolds

Erik Plauschinn

Max-Planck-Institute for Physics Munich

String Phenomenology and Dynamical Vacuum Selection March 27, 2008 – Liverpool

This talk is based on a paper [arXiv:0711.3389] done in collaboration with R. Blumenhagen and S. Moster.

Setup, Notation and Motivation

Moduli Stabilisation vs. Chirality

3 Example: Large Volume Scenarios

Setup, Notation and Motivation

Setup and Notation

An important issue in string phenomenology is moduli stabilisation.

That is, there has to be a minimum in the potential for

- the complex structure moduli U,
- the Kähler moduli T,
- the axio-dilaton S (and further closed and open sector moduli).

More concretely, here we are interested in minima of the potential

- $V_F + V_D$ of the $\mathcal{N} = 1$ SUGRA action in 4D
- originating from type IIB orientifold compactifications

$$\mathbb{R}^{9,1} \to \mathbb{R}^{3,1} \times \mathcal{X}$$
 with O3-/O7-planes.

Motivation

The potential V_F is expressed in terms of the Kähler potential \mathcal{K} and the superpotential W.

• α' -corrections to \mathcal{K} break the no-scale structure of V_F .

[Becker et al., hep-th/0204254]

 \bullet W receives tree-level and non-perturbative contributions

$$W = W_{\rm GVW}(U,S) + \sum_{I} A_{I} e^{-a_{I}T_{I}}.$$

leads to a minimum in V_F for all U and S

each term leads to a minimum in V_F for each T_I

[Kachru et al., hep-th/0301240]

Motivation

The potential V_F is expressed in terms of the Kähler potential \mathcal{K} and the superpotential W.

• α' -corrections to \mathcal{K} break the no-scale structure of V_F .

[Becker et al., hep-th/0204254]

 ${\ensuremath{\, \bullet }}\xspace W$ receives tree-level and non-perturbative contributions

leads to a minimum in V_F for all U and S

each term leads to a minimum in $V_{\!F}$ for each T_I

[Kachru et al., hep-th/0301240]

Main assumption: $A_I \sim \mathcal{O}(1)$ for all Kähler moduli T_I .

- 2 Moduli Stabilisation vs. Chirality
- 3 Example: Large Volume Scenarios

4 Conclusions

E3-Instantons (in Type IIB Orientifolds with O3-/O7-planes)

Non-perturbative effects arise from E3-instantons which are

- \bullet pointlike in \mathbb{R}^4 and
- wrap 4-cycles $\Xi = m^I D_I$ in \mathcal{X} .
- The generated term in the superpotential reads

$$W_{\text{inst.}} = \mathcal{A} \ e^{-2\pi \ m^I T_I} \ .$$

The prefactor ${\mathcal A}$ depends crucially on the instanton zero-modes. For non-vanishing ${\mathcal A}$

universal zero-modes :	only $4 x^{\mu} + 2 \Theta$	\Rightarrow	O(1) instanton
moduli zero-modes :	none	\Rightarrow	rigid cycles
charged zero-modes :	matter couplings	\Rightarrow	$\mathcal{A} = f(U, \Phi)$

[Argurio et al., hep-th/0703236] [Blumenhagen et al., hep-th/0609191]

Interlude: D7-Branes

Because of the orientifold projection we introduce

- space-time filling D7-branes
- wrapping 4-cycles $\Gamma_a = n_a^I D_I$ in \mathcal{X}
- with gauge flux \mathcal{F}_a .

Chiral matter Φ_{ab} between two D7-branes is counted by

$$I_{ab} = \mathcal{M}_{a,I} \, n_b^I - \mathcal{M}_{b,I} \, n_a^I \; ,$$

where the matrix $\mathcal{M}_{a,I}$ is defined as

$$\mathcal{M}_{a,I} = \int_{\mathcal{X}} \mathsf{ch}_1(\mathcal{F}_a) \wedge [\Gamma_a] \wedge [D_I] \;.$$

Chirality and Charged Zero-Modes

• The chiral zero-modes between E3 and D7_a are counted by

$$Z_a = \mathcal{M}_{a,I} m^I$$
 .

• If there is chiral matter between two D7-branes then

$$I_{ab} = \mathcal{M}_{a,I} \, n_b^I - \mathcal{M}_{b,I} \, n_a^I \neq 0 \qquad \Rightarrow \qquad \mathsf{rk} \ \mathcal{M} \neq 0 \, .$$

 \Rightarrow There are (rk $\mathcal{M})$ linearly independent instantons such that

$$Z_a = \mathcal{M}_{a,I} \,\widehat{m}^I \neq 0 \qquad \Rightarrow \qquad \widehat{\mathcal{A}} = f(U) \prod_i \Phi_i \;.$$

MSSM Like String Compactifications

Let us assume the MSSM is realised by D7-branes.

- Chirality implies that we have $I_{ab} \neq 0$ for some a, b.
- \Rightarrow We find (rk $\mathcal{M})$ terms in the superpotential of the form

$$\widehat{W}_{\text{inst.}} = f(U) \prod_{i} \Phi_{i}^{\text{MSSM}} e^{-2\pi \,\widehat{m}^{I} T_{I}}$$

For unbroken MSSM gauge symmetries

- the VEVs of the fields have to vanish: $\langle \Phi^{MSSM} \rangle = 0$.
- \Rightarrow In the vacuum, $\widehat{W}_{\text{inst.}}$ vanishes.
- \Rightarrow (rk \mathcal{M}) Kähler moduli will not be stabilised in V_F .

D-Term Potential

In addition to V_F there is the D-term potential

$$\begin{split} V_D &= \sum_a \frac{1}{\operatorname{\mathsf{Re}} f_a} \Big(\sum_b Q_b^{(a)} \big| \Phi_b \big|^2 - \xi_a \Big)^2 \; . \\ \end{split}$$
 The minimum is where
$$\sum_b Q_b^{(a)} \big| \Phi_b \big|^2 - \xi_a = 0 \\ \xrightarrow{\langle \Phi^{\mathrm{MSSM}} \rangle = 0} \qquad \qquad \xi_a = \frac{1}{\mathcal{V}} \; \mathcal{M}_{a,I} \; t^I = 0 \; . \end{split}$$

These are $(\mathsf{rk} \ \mathcal{M})$ non-trivial equations for $t^I \leftrightarrow (\mathsf{Re} \ T_J)$

- with solution $t^I = 0$ for $t^I \notin \ker \mathcal{M}$.
- \Rightarrow Some 4-cycle volumes (Re T_I) approach zero.
 - The corresponding (rk M) axions (Im T_I) are absorbed into massive U(1)'s.

Summary

If there is chiral (MSSM) matter present then

$$I_{ab} = \mathcal{M}_{a,I} \, n_b^I - \mathcal{M}_{b,I} \, n_a^I \neq 0 \qquad \Rightarrow \qquad \mathsf{rk} \ \mathcal{M} \neq 0 \, .$$

In V_F only rigid O(1) instantons

• with
$$Z_a = \mathcal{M}_{a,I} m^I = 0$$

• can stabilise (def \mathcal{M}) Kähler moduli $T = m^{I}T_{I}$.

The vanishing of the D-term potential

- provides (rk \mathcal{M}) equations for $t^I \leftrightarrow (\operatorname{Re} T_J)$
- which together with massive U(1)'s
- allow to stabilise the remaining Kähler moduli.

- 2 Moduli Stabilisation vs. Chirality
- 3 Example: Large Volume Scenarios

4 Conclusions

Large Volume Scenarios

.

Large Volume Scenarios have very interesting features for string phenomenology. [Balasubramanian et al., hep-th/0502058] [Conlon et al., hep-th/0505076]

LVS can be realised on manifolds

- \bullet with one Kähler modulus controlling the volume ${\cal V}$ of ${\cal X}.$
- $\bullet \ \mathcal{V}$ can be stabilized perturbatively at large values
- if there is (at least) one instanton contribution to W.
- $T_1 \sim \mathcal{V}^{2/3}$ stabilized perturbatively
- T_2 stabilized by inst./D-terms
- T_3 stabilized by inst./D-terms

realise the MSSM on D_2, D_3, \dots via D7-branes

An Explicit Example

In a LVS with 2 Kähler moduli, the MSSM cannot be realised.

- D-branes with gauge flux only on D_2 .
- Instantons on $D_2 \leftrightarrow T_2$ always have charged zero-modes.
- \Rightarrow T_2 will not be stabilised by instantons.

One needs a LVS with at least 3 Kähler moduli.

 \bullet We found $\mathbb{P}_{[1,3,3,3,5]}[15]$ with volume

$$\mathcal{V} = \sqrt{\frac{2}{45}} \left(\left(5\tau_5 + 3\tau_6 + \tau_7 \right)^{\frac{3}{2}} - \frac{1}{3} \left(5\tau_5 + 3\tau_6 \right)^{\frac{3}{2}} - \frac{\sqrt{5}}{3} \left(\tau_5 \right)^{\frac{3}{2}} \right).$$

 We constructed an explicit (non-realistic) model with the constraints above satisfied.

- 2 Moduli Stabilisation vs. Chirality
- 3 Example: Large Volume Scenarios

4 Conclusions

Conclusions

The goal of this talk was to illustrate that

- stabilisation of closed string moduli depends on the open string sector.
- If the MSSM is realised by D-branes, not all Kähler moduli can be stabilised by D-instantons.
- In principle, the D-term potential together with massive U(1)'s allow to stabilise the remaining Kähler moduli.

In the second part of the paper [arXiv:0711.3389]

- we constructed an explicit example of a LVS
- with the arguments above taken into account.