WEAK-coupling IIA Compactifications

Eran Palti (University of Oxford)

Liverpool, Nov 2007

EP, G. Tasinato, J. Ward to appear...

IIA and IIB Geometric Flux Compactifications

Compactifications on explicit manifolds with all moduli stabilised

Theory	10D Understanding	Chiral Spectrum	SUSY Breaking	deSitter/inflation
IIA	\checkmark	✓ (D6)	×	× (no-go)
IIB	★ (non-pertubative)	✓ (D7/3)	✓ (Warping/LARGE -volume)	✓

Key reason: Mirror symmetry interchanges H-flux and geometry.

Study IIA at its 'geometric intersection' with IIB – H-flux with no-legs along the T-duality directions.

IIA orientifolds: complex-structure moduli

Lesson from IIB: corrections away from large complex-structure limit are important (mirrors to IIB alpha' corrections).

Balasubramanian et al. '05

Start from N=2 CY prepotential and impose orientifold constraints.

$$F = \frac{1}{6} d_{abc} \frac{Z^a Z^b Z^c}{Z^0} + d_{ab}^{(1)} Z^a Z^b - \frac{1}{2} d_a^{(2)} Z^a Z^0 - i(Z^0)^2 \xi + \mathcal{O}\left(e^{iZ}\right) . \quad \text{Candelas et al. '91}$$

$$\text{Im } (CZ_{\hat{k}}) = \text{Re } (CF_{\hat{k}}) = \text{Re } (CZ_{\lambda}) = \text{Im } (CF_{\lambda}) = 0 . \quad \text{Grimm and Louis `04}$$

The superfields are

$$S = 2\operatorname{Re}(CZ^{0}) - i\xi^{0} \equiv s + i\sigma \qquad \qquad U_{\lambda} = -2\operatorname{Re}(CF_{\lambda}) + i\xi_{\lambda} \equiv u_{\lambda} + i\nu_{\lambda}$$

This is the mirror to the alpha' corrected IIB Kahler potential. 3

The Kahler moduli superpotential

From now on we work in the large complex-structure (no-scale) regime

We turn on the full RR fluxes but only one component of H-flux

$$H = -h_0\beta^0 , \ F_0 = -f_0 , \ F_2 = -\tilde{f}^i\omega_i , \ F_4 = -f_i\tilde{\omega}^i , \ F_6 = -\tilde{f}_0\epsilon .$$

The superpotential reads

$$W = W^{T}(T) + W^{Q}(S) = \frac{f_{0}}{6} K_{ijk} T^{i} T^{j} T^{k} + \frac{1}{2} K_{ijk} \tilde{f}^{i} T^{j} T^{k} - f_{i} T^{i} + \tilde{f}_{0} - ih_{0} S .$$

Dilaton F-term $-ih_0\bar{S} = W^T$.

When satisfied the Kahler F-terms read

$$b^{i} = -\frac{\tilde{f}^{i}}{f_{0}} \,. \qquad \kappa \left[\kappa_{ijk} \tilde{f}_{j} \tilde{f}_{k} + 2f_{0} f_{i} \right] = 0 \,. \qquad \qquad \mathcal{V} \equiv \frac{1}{6} K_{ijk} \tau^{i} \tau^{j} \tau^{k} \equiv \frac{1}{6} \kappa$$

This means that either we pick the fluxes and the Kahler moduli are flat directions, or they are driven to a non-physical regime.

Adding alpha' corrections

To stabilise the Kahler moduli in a physical regime we add the effects of alpha' corrections.

This is done as in the IIB literature: we use the correction calculated due to the induced dilaton gradient

$$\mathcal{V}R_4 \to \left(\mathcal{V} + \frac{\epsilon}{2}\right)R_4$$
, Becker et al. '02

and fit this into a truncated prepotential framework, matching the mirror symmetry predictions

$$F = -\frac{1}{6} \frac{K_{ijk} T^{i} T^{j} T^{k}}{T^{0}} + K_{ij}^{(1)} T^{i} T^{j} + K_{i}^{(2)} T^{i} T^{0} - i\epsilon (T^{0})^{2} .$$

$$K^{T} = -\ln 8 \left(\mathcal{V} + \frac{1}{2} \epsilon \right) .$$

$$W^{T} = f_{0} F_{0} - \tilde{f}^{i} F_{i} - f_{i} T^{i} + \tilde{f}_{0} = \frac{f_{0}}{\epsilon} K_{ijk} T^{i} T^{j} T^{k} + \frac{1}{2} K_{ijk} \tilde{f}^{i} T^{j} T^{k} - \bar{f}_{i} T^{i} + \bar{f}_{0} - 2i f_{0} \epsilon \cdot \frac{1}{\epsilon} I^{i} = f_{i} - f_{0} K_{i}^{(2)} + 2 \tilde{f}^{j} K_{ij}^{(1)} , \quad \bar{f}_{0} = \tilde{f}_{0} - \tilde{f}^{i} K_{i}^{(2)} .$$

$$5$$

Fixing the Kahler moduli

This fixes the Kahler moduli as

$$9\epsilon f_0^2 \kappa_i = (3\epsilon - 2\kappa) \left(K_{ijk} \tilde{f}^j \tilde{f}^k + 2f_0 \bar{f}_i \right) \; .$$

Or schematically

$$\tau \simeq \frac{-9\epsilon f_0^2}{2K\left(\tilde{f}^2 + 2f_0\bar{f}\right)}, \qquad s \simeq \frac{f_0K\tau^3}{6h_0},$$

If want to pick the fluxes so flat directions at tree-level then Moduli stabilised at unphysical points again.

For general fluxes tree-level potential is not flat but drives towards zero volume. To move away require competition between alpha' corrections and tree-level terms.

Alpha' expansion breakdown? Not so simple with fluxes.

Taking F_0 large means can still expand in terms of the Kahler vevs.

Fixing the Kahler moduli

Schematically the scalar potential reads

$$V \sim \frac{f_0^2}{\tau^3} + \frac{h_0^2}{\tau^6} + \frac{f_0 h_0}{\tau^{\frac{9}{2}}} + \frac{f_0^2 \epsilon}{\tau^6} + \frac{\left(f_i + f_0 K_i^{(2)}\right)^2}{\tau^7} + \frac{\left(f_i + f_0 K_i^{(2)}\right) f_0 \epsilon}{\tau^8} + \frac{f_0^2 \epsilon^2}{\tau^9} + \dots$$

Tree-level in F_4 more supressed than higher orders in F_0 .

Can show that first four terms vanish at minimum for dilaton.

The moduli are stabilised by a competition between a tree level term in F_4 and a higher order term in F_0 .

Other corrections?

It can be shown that these are equivalent to the IIB ISD conditions away from the large complex-structure limit.

String-loop corrections highly supressed at minimum where coupling exponentially small. 7

Including the complex-structure moduli

Having fixed the Kahler moduli and dilaton we can fix the complexstructure moduli using D6-brane gaugino condensation or E2instantons. This is the mirror to KKLT or LARGE-volume.

$$\begin{split} W &= W_0(S,T) + \sum A_{\tilde{\lambda}} e^{-a_{\tilde{\lambda}} U_{\tilde{\lambda}}} \ . \\ V &= \frac{1}{32s\mathcal{V}} \left[\frac{8u_{\tilde{\lambda}}^{\frac{1}{2}}}{3\mathcal{V}'\alpha h^{\tilde{\lambda}}} \left| A_{\tilde{\lambda}} a_{\tilde{\lambda}} \right|^2 e^{-2a_{\tilde{\lambda}} u_{\tilde{\lambda}}} - \frac{4u_{\tilde{\lambda}}}{\mathcal{V}'^2} \left| A_{\tilde{\lambda}} a_{\tilde{\lambda}} \right| |W_0| e^{-a_{\tilde{\lambda}} u_{\tilde{\lambda}}} + \frac{3\xi' |W_0|^2}{4\mathcal{V}'^3} \right] \ , \end{split}$$

This has an AdS minimum with exponentially large \mathcal{V}' .

Look at 10D dilaton = string coupling

$$g_s^{-1} = e^{-\hat{\phi}} \simeq \sqrt{2}s^{\frac{1}{4}} \mathcal{V}^{-\frac{1}{2}} \mathcal{V}^{\frac{1}{2}}.$$

Hence we are at WEAK (or maybe weak) coupling.

Consequence of T-duality mixing dilaton and metric components. 8

Uplifting with D6 branes at angles

No go: No inflation/deSitter vacua with moduli stabilised in IIA on CY (at tree level in alpha'). Hertzberg et al. '08

We consider a D6 brane calibrated with a different phase to the calibration of the orientifold wrapping the cycle

$$\pi = e_0 \alpha_0 + m_\lambda \alpha_\lambda + e^\lambda \beta^\lambda ,$$

Reducing the DBI action gives

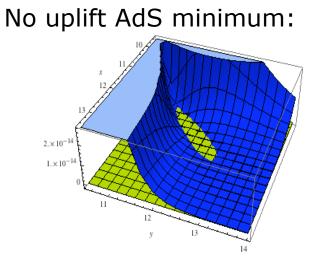
$$V_D = \frac{\left(m_\lambda q^\lambda\right)^2}{4\left(\mathcal{V}' + \frac{1}{2}\xi'\right)^2 \left(e_0 s + e^\lambda u_\lambda\right)}$$

Taking two modulus toy model and picking typical values for the many parameters gives

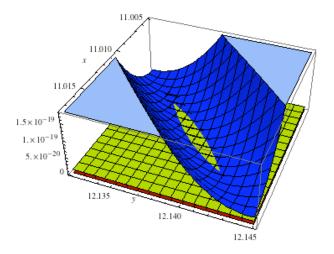
$$V = \frac{\sqrt{u_s}e^{-2u_s}}{\mathcal{V}'} - \frac{2u_se^{-u_s}}{\mathcal{V}'^2} + \frac{10^{\frac{3}{2}}}{\mathcal{V}'^3} + \frac{10^3\mathcal{V}_0}{s_0^2\mathcal{V}'^2}\frac{u_s}{e_0s_0 + e^bu_b + e^su_s} \ .$$

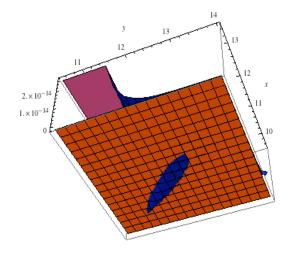
9

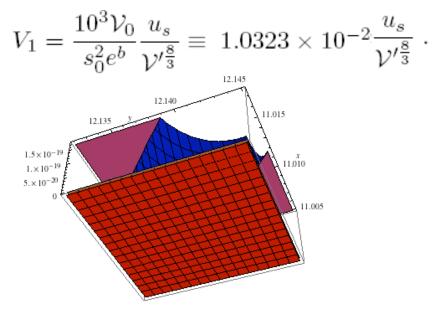
deSitter minima



Example deSitter minimum







String and SUST scale + inflation

We have

$$m_s \sim rac{g_s}{\sqrt{\mathcal{V}}} M_p \;, \;\; m_{rac{3}{2}} \sim rac{g_s^2}{\mathcal{V}} M_p \;,$$

Require $g_s \sim 10^{-7}$.

Can recreate the IIB Kahler moduli inflation model.

Conlon Quevedo '05

Summary

Can recreate some of the IIB phenomenological success in IIA.

Alpha' corrections play a crucial role in fixing the Kahler moduli and avoiding the no-go theorem for D6 uplifting.

The IIA mirrors to IIB LARGE-volume models are at WEAK-coupling

Can study LARGE-volume/KKLT phenomenology from both sides of the mirror

Perhaps some things easier to calculate in the IIA side:

- Matter sector related to CY complex-structure instead of Kahler.
- Exponentially weak string coupling