<u>Quasi-realistic heterotic-string models with</u> <u>vanishing one-loop cosmological constant and</u> <u>perturbatively broken supersymmetry?</u>

Elisa Manno(with G.Cleaver, A.Faraggi, C.Timirgaziu) arXiv: 0802.0407 [hep-th]

Workshop on String Phenomenology and Dynamical Vacuum Selection 27-29 March 2008

Outline

- Supersymmetry breaking in string theory and in quantum field theory
- Free fermionic heterotic string models with minimal Higgs spectrum
- Flat directions
 - o F and D-flat constraints
 - o stringent and general f-flatness
 - o basis of flat directions

Conclusions

QFT: Supersymmetry preserved at the classical level — no supersymmetry breaking in perturbation theory (supersymmetry breaking only by non perturbative effects)

String Theory (Free-Fermionic Models):

The presence of $U(1)_A$ gives rise to a FY D-term

breaking of Susy at one-loop level

Susy restored by imposing F and D-flatness on the vacuum

Can susy be broken at perturbative level?

- Asymmetric boundary conditions on the compact space coordinates reduce the Higgs spectrum to a pair of untwisted doublets (hep-th/0504016).
- A consequence is the projection of untwisted singlet fields (hep-th/0610118).

If flat directions are not found supersymmetric moduli are fixed!!! <u>D and F flatness constraints</u> <u>in free fermionic models</u>

 $\Box < D_A > = < D_\alpha > = 0 ; < F_i = \partial W / \partial \chi_i > = 0 ;$

D_A = Σ Q^{k}_{A} | χ_{k} |² + ξ ;

$$\Box D_{\alpha} = \sum Q_{\alpha}^{k} | \chi_{k} |^{2} , \alpha \neq A ;$$

$$\xi = g^2 (\text{Tr } Q_A) M^2_{Pl} / 192 \pi^2$$

General	regulte	60	far	
Ulllai	1030103	50	121	••

In free fermionic models solutions to F and D-flatness contraints have always been found.

- In general there is a moduli space of solutions (supersymmetric and degenerate)
- Solutions can be given by
 - non-Abelian singlets (type 1 solutions)
 - non-Abelian fields (type 2 solutions)
- The analysis and classification of flat directions is performed by a systematic method.

Stringent flat directions

- F-flatness of a vev direction in the low energy spectrum may be proven to a given order by cancellation of F-term components but this flatness is lost if there is no cancellation at the next higher order
- Stringent F-flatness requires that each component has vanishing vacuum expectation value, for ex.:

$$W = ..+ \overline{\Phi}_{45}(\overline{\Phi}_{46} \overline{\Phi'}_{56} + \overline{\Phi'}_{46} \overline{\Phi}_{56}) + \Phi_{45}(\Phi_{46} \Phi'_{56} + \Phi'_{46} \Phi_{56}) + ...$$

$$\mathsf{F}_{\Phi_{45}} = \overline{\Phi}_{46} \,\overline{\Phi}'_{56} + \overline{\Phi}'_{46} \,\overline{\Phi}_{56}$$

usual condition

stringent flatness condition

$$=0$$
 $<\overline{\Phi_{46}} \ \overline{\Phi'_{56}}>=0 ; <\overline{\Phi'_{46}} \ \overline{\Phi}_{56}>=0$

Why do we look for stringent F-flatness?

• Can be proved to all orders:

the analysis is restricted to a finite set of possible dangerous superpotential terms (SVD method)

- **I**t makes easier the classification of flat directions
- It is a stronger constraint which gives less fine-tuned solutions

if none of these terms survive F-flatness safe to all orders!!

■ **NAHE set** {1,S,b₁,b₂,b₃}

One-loop GSO projection coefficients

Additional boundary condition basis vectors

	ψ^{μ}	χ^{12}	χ^{34}	χ^{56}	$\bar{\psi}$	1,,5	$\bar{\eta}$	$1 \overline{\eta}^2$	$\bar{\eta}^3$		$\bar{\phi}^{1,,8}$	
С	κ 0	0	0	0	11	100)]	. 0	0	110	000	00
ļ.	3 0	0	0	0	$1 \ 1$	$1 \ 0 \ 0$			0	$0 \ 0 \ 1$	100	00
	y 0	0	0	0	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	000	$0 \frac{1}{2} \frac{1}{2}$	$\frac{1}{2}$ $\frac{1}{2}$
					2 2	44	6 4	5 4	4		4 4	
	y^3y^6	$y^4 \bar{y}^4$	$y^5 \bar{y}^5 \bar{y}$	$\bar{y}^3 \bar{y}^6$	$y^1 \omega^5$;	$y^2 ar y^2$ ($\omega^6 \bar{\omega}^6$	$\bar{y}^1 \bar{\omega}^5$	$\omega^2 \omega$	$^{4} \omega^{1} \bar{\omega}^{1}$	$\omega^3 \bar{\omega}^3$	$\bar{\omega}^2 \bar{\omega}^4$
α	1	0	0	1	0	0	1	1	0) ()	1	1
β	0	0	1	1	1	0	0	1	0) 1	0	1
γ	0	1	0	0	0	1	0	0	1	. 0	0	0

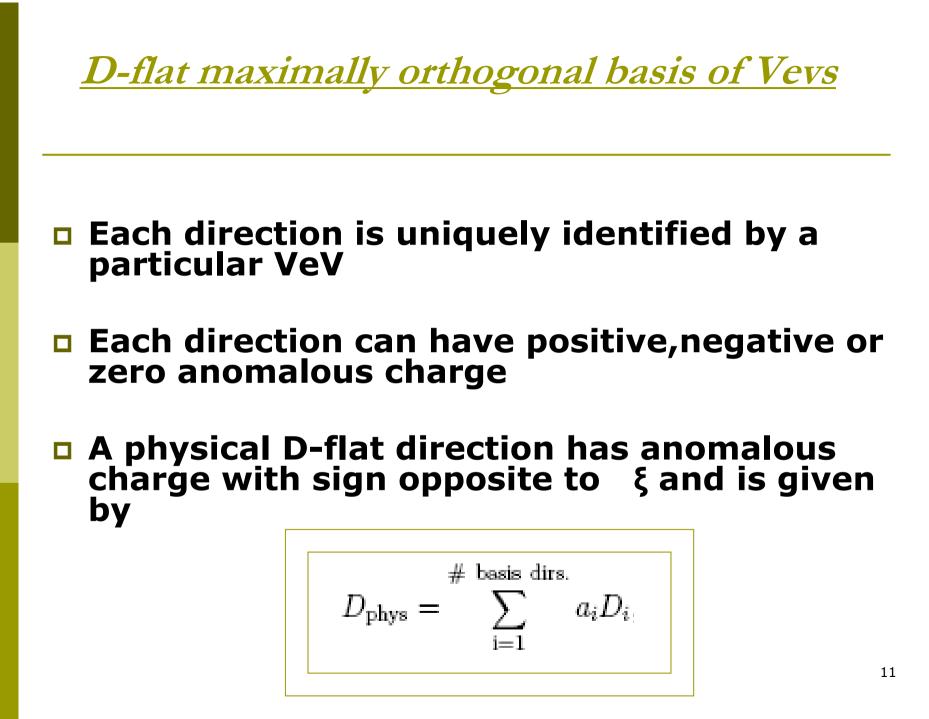
9

continued...

- Observable gauge group \longrightarrow $SU(3)_C \times SU(2)_L \times U(1)_C \times U(1)_L \times U(1)_{1,2,3} \times U(1)_{4,5,6}$ ■ Hidden gauge group \longrightarrow $SU(2)_{1,2,3,4} \times SU(4)_{H_1} \times U(1)_{H_1}$
- Anomalous U(1) $\rightarrow U_A = -2U_1 2U_2 + 2U_3 U_4 + U_5 U_6$, $\text{Tr}Q_A = 180$.

 Anomaly free combinations for all U(1)s

$$\begin{array}{rcl} U'_1 &=& U_1 - U_2 &, & U'_2 \,=\, U_1 + U_2 + 2 U_3, \\ U'_3 &=& U_4 + U_5 &, & U'_4 \,=\, U_4 - U_5 - 2 U_6, \\ U'_5 &=& U_1 + U_2 - U_3 - 2 U_4 + 2 U_5 - 2 U_6. \end{array}$$



Directions with only non-Abelian singlets

FD	$\frac{Q_A}{15}$	Φ_{46}	Φ_{45}^{\prime}	$\bar{\Phi}_{56}'$	V_3	V_2	V_6	V_5	V_9	V_8	N_1^c	N_2^c	N_3^c	Φ_{46}^{\prime}	Φ_{45}	
		$\bar{\Phi}_{56}$	e_1^c	e_2^c	e_3^c	H_7	H_6	H_5								
\mathcal{D}_1'	$\begin{pmatrix} 1 \end{pmatrix}$	1	-2	1	0	0	0	0	0	3	0	0	0	0	0	
	\searrow	0	0	0	3	2	2	2								
\mathcal{D}_2'	$\begin{pmatrix} 2 \end{pmatrix}$	2	-1	-1	0	6	0	0	0	0	0	0	0	0	0	do not carry negative
	\bigtriangledown	0	0	0	6	1	4	7								
\mathcal{D}'_{3}	(2)	-1	-1	2	0	0	0	6	0	0	0	0	0	0	0	charge!!
,	\smile	0	0	0	6	1	7	4								
\mathcal{D}'_4	0	1	-1	0	0	0	0	0	0	0	0	0	0	0	0	
,		0	0	2	-2	1	-1	0								
\mathcal{D}_5'	0	-1	1	0	0	0	0	0	0	0	0	2	-2	0	0	do not have vector-like
		0	0	0	0	1	-1	0	-	-	-	-	_	-	-	
\mathcal{D}_{6}^{\prime}	0	0	-1	1	0	0	0	0	0	0	0	0	0	0	0	partner fields!!
~ ′		0	2	0	-2	1	0	-1	~	~			~		-	
\mathcal{D}_7'	0	1	0	-1	0	0	0	0	0	0	0	0	0	0	1	
<i>\\</i>	_	0	0	0	0	0	0	0	0	~	0	~			0	
${\cal D}_8'$	0		-1	0	0	0	0	0	0	0	0	0	0	0	0	
D '	0		0 -1	0	0	0	0	0	0	0	0	0	0	1	0	
\mathcal{D}'_{9}	0	0	-1	0	0	0	0	0 0	0	0	0	0	0	1	0	
\mathcal{D}'	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	◆
$\mathcal{D}_{10}^{\prime}$	0	ő	0	0	_1	0	_1	_1	1	0	0	0	0	0	0	No physical D flat
$\mathcal{D}_{11}^{'}$	0	ő	1	-1	-1	0	-1	-1	0	0	2	0	-2	0	0	No physical D-flat
ν_{11}	0	0	0	-1	0	1	0	-1	U	0	2	0	-2	0	0	directions!!
$\mathcal{D}_{12}^{'}$	0	_1	1	0	0	0	2	-1	0	0	0	0	0	0	0	
ν_{12}	Ů	-1	0	0	-2	-1	-1	-2	U	0	0	0	0	0	0	
$\mathcal{D}_{13}^{'}$	0	ŏ	1	_1	2	0	-1	0	0	0	0	0	0	0	0	
L 13	Ŭ	ŏ	0	-1	-2	-1	-2	-1	0	0	0	U	0	0	0	
		5	5	5	-	-	-	-								J 1

...including non-Abelian charged fields...

Set of <u>50 maximally orthogonal</u> D-flat <u>basis directions</u>; among them

negative, positive and zero anomalous charged directions

many of the fields have vector-like partners

to get physical D-flat directions

Constraints on the coefficients

Negative anomalous charge

$$-2\sum_{i=1}^{2} a_i - \sum_{i=3}^{9} a_i + \sum_{i=30}^{44} a_i + 2\sum_{i=45}^{50} a_i < 0.$$

Non-negative norm square vev for non-vector like components (ex. e₃^c)

$$-6\sum_{i=1}^{2} a_i - 3a_3 - 6\sum_{i=4}^{6} a_i - 2a_7 - 6\sum_{i=8}^{9} a_i - 2\sum_{i=18}^{19} a_i - a_{20} + a_{21}$$
$$-2\sum_{i=23}^{24} a_i - a_{25} - 2a_{26} + 2a_{27} - 2a_{28} + 2a_{29} + 6a_{30} + 6a_{32} + a_{33}$$
$$+3\sum_{i=39}^{40} a_i + 6a_{42} + 6\sum_{i=45}^{47} a_i + 2\sum_{i=48}^{49} a_i + 6a_{50} \ge 0.$$

For the set of non-vector like fields

$$a_i \ge 0$$

F-flatness constraints on the coefficients

Each superpotential term induces several stringent F-term constraints on the coefficients a_i of physical flat directions

For non-Abelian singlets \rightarrow two or more singlets with no vevs For non-Abelian fields \rightarrow

$$W = + \Phi_{45}(\bar{\Phi}_{46}\bar{\Phi}'_{56} + \bar{\Phi}'_{46}\bar{\Phi}_{56}) + \bar{\Phi}_{45}(\Phi_{46}\Phi'_{56} + \Phi'_{46}\Phi_{56}) + \Phi'_{45}(\bar{\Phi}_{46}\Phi_{56} + \bar{\Phi}'_{46}\Phi'_{56}) + \bar{\Phi}'_{45}(\Phi_{46}\bar{\Phi}_{56} + \Phi'_{46}\bar{\Phi}'_{56}) + \cdots + \cdots$$

. . .

EX.:

$$< \Phi_{45} >, < \Phi'_{45} >, < \bar{\Phi}_{45} >, < \bar{\Phi}'_{45} > \neq 0, \text{ or}$$

 $< \bar{\Phi}_{46} >, < \bar{\Phi}'_{46} >, < \Phi_{46} >, < \Phi'_{46} > \neq 0, \text{ or}$
 $< \bar{\Phi}'_{56} >, < \bar{\Phi}_{56} >, < \Phi'_{56} >, < \Phi_{56} > \neq 0.$

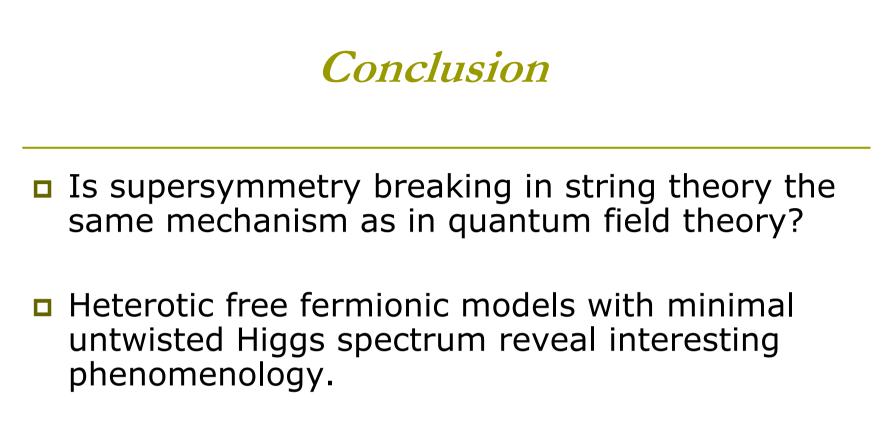
15

Systematic investigation performed

- Physical D-flat directions which are linear combinations of only up to 6 basis elements
- Assume all the Vevs to be of the same order of magnitude
- Fix the range where the coefficients can vary
- Impose the Anomalous D-flat constraints
- Applying the SVD method we test stringent Fflatness to all order
- Check F-flatness to eight order superpotential terms

But... <u>No physical D-flat directions</u> satisfying stringent F-costraints have been found to all order!!! <u>No F-flat to eight order!!</u>

> We can enlarge the set of D-flat directions Increase the number of ai coefficients Increase the number of unique Vevs associated to each direction The probability to satisfy stringent F-flatness constraints decreases



- Analysis of flat directions in a systematic way
- Existence of a supersymmetric model at the classical level with perturbatively broken supersymmetry ?