Monad Bundles

Heterotic String Compactification

Andre Lukas
University of Oxford

In collaboration with: Lara Anderson, Yang-Hui He Based on : hep-th/0702210, in preparation

Overview

- Introduction: Heterotic Calabi-Yau compactifications
- Complete intersection Calabi-Yau manifolds
- Monad bundles

Positive monads, stability and spectrum
Semi-positive monads

- Conclusion and outlook

Heterotic Calabi-Yau compactifications

Heterotic Calabi-Yau compactifications

Bosonic fields in $d=10$
metric g
\longrightarrow

NS 3-form H

dilator $\phi \quad \longrightarrow$
$E_{8} \times E_{8}$ gauge fields A

5-brane embedding $X^{I}(\sigma)$

Background for $\mathrm{N}=1$ in $\mathrm{d}=4$ $g=g\left(M_{4}\right)+g(X)$, where $g(X)$ Ricci- flat metric on CY X
$H=0$ for now (possibly flux added later)
$\phi=$ const
$A_{\text {int }}$ connection on holomorphic vector bundle V on X
5-brane stretches across M_{4}, wraps holomorphic curve $C \subset X$

Heterotic Calabi-Yau compactifications

Bosonic fields in $d=10$
metric g

NS 3-form H

dilator ϕ

$E_{8} \times E_{8}$ gauge fields A

5-brane embedding $X^{I}(\sigma)$

Background for $\mathrm{N}=1$ in $\mathrm{d}=4$ $g=g\left(M_{4}\right)+g(X)$, where $g(X)$ Ricci- flat metric on CY X
$H=0$ for now (possibly flux added later)
$\phi=$ cons
$A_{\text {int }}$ connection on holomorphic vector bundle V on X
5-brane stretches across M_{4}, wraps holomorphic curve $C \subset X$

Data defining a heterotic vacuum:
CY manifold X (Ricci-flat $g(X)$ exists from Yau's theorem)

- holom. bundle V on X ($A_{\text {int }}$ exist from Donaldson-Uhlenbeck-Yau)

5-brane class $W=[C] \in H^{2}(X)$

Three additional constraints:

Three additional constraints:

anomaly cancellation: $c_{2}(T X)-c_{2}(V)=W$
effectiveness of W : a hol. curve $C \subset X$ with $W=[C]$ needs to exist $\rightarrow W$ must be in Mori cone of X
stability of V : condition on V to ensure that $A_{\text {int }}$ indeed leads to a vanishing gaugino SUSY variation

Three additional constraints:

anomaly cancellation: $c_{2}(T X)-c_{2}(V)=W$
effectiveness of W : a hol. curve $C \subset X$ with $W=[C]$ needs to exist $\rightarrow W$ must be in Mori cone of X
stability of V : condition on V to ensure that $A_{\text {int }}$ indeed leads to a vanishing gaugino SUSY variation

What is stability?

Slope of a bundle (coherent sheaf) $\mathcal{F}: \mu(\mathcal{F})=\frac{1}{\operatorname{rk}(\mathcal{F})} \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J$

Three additional constraints:

anomaly cancellation: $c_{2}(T X)-c_{2}(V)=W$
effectiveness of W : a hol. curve $C \subset X$ with $W=[C]$ needs to exist $\rightarrow W$ must be in Mori cone of X
stability of V : condition on V to ensure that $A_{\text {int }}$ indeed leads to a vanishing gaugino SUSY variation

What is stability?

Slope of a bundle (coherent sheaf) $\mathcal{F}: \mu(\mathcal{F})=\frac{1}{\operatorname{rk}(\mathcal{F})} \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J$

A bundle V is stable if $\mu(\mathcal{F})<\mu(V)$ for all coherent sub-sheafs $\mathcal{F} \subset V$

Stability of bundles is usually hard to prove!

Model-building basics

Choose "observable"bundle V with structure group $G=\mathrm{SU}(n) \subset E_{8}$, where $n=3,4,5$ such that $c_{2}(T X)-c_{2}(V) \in$ Mori cone of X
Then anomaly constraint can be satisfied by a suitable 5 -brane curve.

Model-building basics

Choose "observable"bundle V with structure group $G=\mathrm{SU}(n) \subset E_{8}$, where $n=3,4,5$ such that $c_{2}(T X)-c_{2}(V) \in$ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve.

$E_{8} \rightarrow G \times H$	Residual Group Structure	
E_{8} breaking and	$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{7 8}) \oplus(\mathbf{3}, \mathbf{2 7}) \oplus(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}) \oplus(\mathbf{8}, \mathbf{1})$
	$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{4 5}) \oplus(\mathbf{4}, \mathbf{1 6}) \oplus(\overline{\mathbf{4}}, \overline{\mathbf{1 6}}) \oplus(\mathbf{6}, \mathbf{1 0}) \oplus(\mathbf{1 5}, \mathbf{1})$
	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})$	

Model-building basics

Choose "observable" bundle V with structure group $G=\mathrm{SU}(n) \subset E_{8}$, where $n=3,4,5$ such that $c_{2}(T X)-c_{2}(V) \in$ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve.
E_{8} breaking and group structure

$E_{8} \rightarrow G \times H$	Residual Group Structure
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{7 8}) \oplus(\mathbf{3}, \mathbf{2 7}) \oplus(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}) \oplus(\mathbf{8}, \mathbf{1})$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{4 5}) \oplus(\mathbf{4}, \mathbf{1 6}) \oplus(\overline{\mathbf{4}}, \overline{\mathbf{1 6}}) \oplus(\mathbf{6}, \mathbf{1 0}) \oplus(\mathbf{1 5}, \mathbf{1})$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})$

particle spectrum

Decomposition	Cohomologies
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$n_{27}=h^{1}(V), n_{\overline{27}}=h^{1}\left(V^{*}\right)=h^{2}(V), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$n_{16}=h^{1}(V), n_{\overline{16}}=h^{2}(V), n_{10}=h^{1}\left(\wedge^{2} V\right), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$n_{10}=h^{1}\left(V^{*}\right), n_{\overline{10}}=h^{1}(V), n_{5}=h^{1}\left(\wedge^{2} V\right), n_{\overline{5}}=h^{1}\left(\wedge^{2} V^{*}\right)$ $n_{1}=h^{1}\left(V \otimes V^{*}\right)$

Model-building basics

Choose "observable" bundle V with structure group $G=\mathrm{SU}(n) \subset E_{8}$, where $n=3,4,5$ such that $c_{2}(T X)-c_{2}(V) \in$ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve.
E_{8} breaking and group structure

$E_{8} \rightarrow G \times H$	Residual Group Structure
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{7 8}) \oplus(\mathbf{3}, \mathbf{2 7}) \oplus(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}) \oplus(\mathbf{8}, \mathbf{1})$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{4 5}) \oplus(\mathbf{4}, \mathbf{1 6}) \oplus(\overline{\mathbf{4}}, \overline{\mathbf{1 6}}) \oplus(\mathbf{6}, \mathbf{1 0}) \oplus(\mathbf{1 5}, \mathbf{1})$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})$

particle
spectrum

Decomposition	Cohomologies
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$n_{27}=h^{1}(V), n_{\overline{27}}=h^{1}\left(V^{*}\right)=h^{2}(V), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$n_{16}=h^{1}(V), n_{\overline{16}}=h^{2}(V), n_{10}=h^{1}\left(\wedge^{2} V\right), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$n_{10}=h^{1}\left(V^{*}\right), n_{\overline{10}}=h^{1}(V), n_{5}=h^{1}\left(\wedge^{2} V\right), n_{\overline{5}}=h^{1}\left(\wedge^{2} V^{*}\right)$ $n_{1}=h^{1}\left(V \otimes V^{*}\right)$

index

$$
\operatorname{ind}(V)=\sum_{p=0}^{3}(-1)^{p} h^{p}(X, V)=\frac{1}{2} \int_{X} c_{3}(V)
$$

stable bundles: $h^{0}(X, V)=h^{3}(X, V)=0 \rightarrow$ chiral asymmetry

Model-building basics

Choose "observable" bundle V with structure group $G=\mathrm{SU}(n) \subset E_{8}$, where $n=3,4,5$ such that $c_{2}(T X)-c_{2}(V) \in$ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve.
E_{8} breaking and group structure

$E_{8} \rightarrow G \times H$	Residual Group Structure
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{7 8}) \oplus(\mathbf{3}, \mathbf{2 7}) \oplus(\overline{\mathbf{3}}, \overline{\mathbf{2 7}}) \oplus(\mathbf{8}, \mathbf{1})$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{4 5}) \oplus(\mathbf{4}, \mathbf{1 6}) \oplus(\overline{\mathbf{4}}, \overline{\mathbf{1 6}}) \oplus(\mathbf{6}, \mathbf{1 0}) \oplus(\mathbf{1 5}, \mathbf{1})$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$\mathbf{2 4 8} \rightarrow(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \overline{\mathbf{1 0}}) \oplus(\overline{\mathbf{5}}, \mathbf{1 0}) \oplus(\mathbf{1 0}, \mathbf{5}) \oplus(\overline{\mathbf{1 0}}, \overline{\mathbf{5}}) \oplus(\mathbf{2 4}, \mathbf{1})$

particle
spectrum

Decomposition	Cohomologies
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$n_{27}=h^{1}(V), n_{\overline{27}}=h^{1}\left(V^{*}\right)=h^{2}(V), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$n_{16}=h^{1}(V), n_{\overline{16}}=h^{2}(V), n_{10}=h^{1}\left(\wedge^{2} V\right), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$n_{10}=h^{1}\left(V^{*}\right), n_{\overline{10}}=h^{1}(V), n_{5}=h^{1}\left(\wedge^{2} V\right), n_{\overline{5}}=h^{1}\left(\wedge^{2} V^{*}\right)$ $n_{1}=h^{1}\left(V \otimes V^{*}\right)$

index

$$
\operatorname{ind}(V)=\sum_{p=0}^{3}(-1)^{p} h^{p}(X, V)=\frac{1}{2} \int_{X} c_{3}(V)
$$

stable bundles: $h^{0}(X, V)=h^{3}(X, V)=0 \rightarrow$ chiral asymmetry
Finally: Discrete symmetry, Wilson line to break to $G_{\mathrm{SM}} \times \mathrm{U}(1)^{n-3}$ Alternatively, use $\mathrm{U}(n)$ bundles. (Blumenhagen et al. '06)

Which CYs and which bundles?

Complete intersections in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Hubsch, Green, Lutken, Candelas... ‘87)
Monad bundles
(Distler, Greene '88, Kachru '95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

Which CYs and which bundles?

Complete intersections in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Hubsch, Green, Lutken, Candelas... '87)

Monad bundles
(Distler, Greene '88, Kachru '95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

Monads?

Which CYs and which bundles?

Complete intersections
in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Hubsch, Green, Lutken, Candelas... `87)

Monad bundles

(Distler, Greene '88, Kachru '95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

Monads?

Spectral cover bundles
(Friedman, Morgan, Witten '97, Donagi '97, Donagi, Lukas, Ovrut, Waldram '98,...)

Which CYs and which bundles?

Complete intersections
in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
Monad bundles
(Distler, Greene '88, Kachru '95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

Toric CYs
(...,Kreuzer, Skarke '00,...)

Elliptically fibered CYs
(Morrison, Vafa '96,...)

Monads?

Spectral cover bundles
(Friedman, Morgan, Witten '97, Donagi '97, Donagi, Lukas, Ovrut, Waldram '98,...)

+ Spectral cover bundles are shown to be stable
- Discrete symmetries are _very_ hard to find

Which CYs and which bundles?

Complete intersections
Monad bundles
in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Distler, Greene '88, Kachru '95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)
(Hubsch, Green, Lutken, Candelas... ‘87)

+ Discrete symmetries can be understood thanks to ambient space
- Stability had not been shown

Toric CYs
(...,Kreuzer, Skarke '00,...)

Elliptically fibered CYs
(Morrison, Vafa '96,...)

Monads?

Spectral cover bundles
(Friedman, Morgan, Witten '97, Donagi '97, Donagi, Lukas, Ovrut, Waldram '98,...)

+ Spectral cover bundles are shown to be stable
- Discrete symmetries are _very_ hard to find

Which CYs and which bundles?

Complete intersections in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Hubsch, Green, Lutken, Candelas... `87)

Monad bundles
(Distler, Greene '88, Kachru'95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

+ Discrete symmetries can be understood thanks to ambient space
- Stability had not been shown

Focus on complete intersection and monads!
Looking for systematic, algorithmic approach to apply to large numbers.

Toric CYs
(..., Kreuzer, Skarke '00,...)

Elliptically fibered CYs
(Morrison, Vafa '96,...)

Monads?

Spectral cover bundles
(Friedman, Morgan, Witten '97, Donagi '97, Donagi, Lukas, Ovrut, Waldram ' $98, . .$.)

+ Spectral cover bundles are shown to be stable
- Discrete symmetries are _very_ hard to find

Which CYs and which bundles?

Complete intersections in $\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{m}}$
(Hubsch, Green, Lutken, Candelas... `87)

Monad bundles
(Distler, Greene '88, Kachru'95, Blumenhagen et al. '96, Lukas, Ovrut '99, Blumenhagen at al '06)

+ Discrete symmetries can be understood thanks to ambient space
- Stability had not been shown

Focus on complete intersection and monads!
Looking for systematic, algorithmic approach to apply to large numbers.

Toric CYs
(...,Kreuzer, Skarke '00,...)

Elliptically fibered CYs
(Morrison, Vafa '96,...)

Monads?

Spectral cover bundles
(Friedman, Morgan, Witten '97, Donagi '97, Donagi, Lukas, Ovrut, Waldram '98,...)

+ Spectral cover bundles are shown to be stable
- Discrete symmetries are _very_ hard to find

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.

Examples: $\left[\mathbb{P}^{4} \mid 5\right] \quad$ (quintic polynomial in \mathbb{P}^{4})

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87)

Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})
$\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right]$ (intersection of two polynomials of bi-degrees
$\left.\begin{array}{l|ll}\mathbb{P}^{4} & 4 & 1\end{array}\right](0,4)$ and $(2,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{4}$

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87)

Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})
$\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right]$ (intersection of two polynomials of bi-degrees $\left.\begin{array}{l|ll}\mathbb{P}^{4} & 4 & 1\end{array}\right](0,4)$ and $(2,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{4}$
Known topological data: $h^{1,1}(X), h^{2,1}(X), c_{2}(T X)=c_{2}^{r}(T X) J_{r}, d_{r s t}=\int_{X} J_{r} \wedge J_{s} \wedge J_{t}$

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87)

Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})

$$
\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right] \begin{array}{l}\text { (intersection of two polynomials of bi-degrees } \\ (0,4) \text { and }(2,1) \text { in } \mathbb{P}^{1} \times \mathbb{P}^{4}\end{array}
$$

Known topological data: $h^{1,1}(X), h^{2,1}(X), c_{2}(T X)=c_{2}^{r}(T X) J_{r}, d_{r s t}=\int_{X} J_{r} \wedge J_{s} \wedge J_{t}$
Focus on 5000 "favourable" Cicys: $h^{1,1}(X)=m=\# \mathbb{P} s, H^{2}(X)=\operatorname{Span}\left\{J_{r}\right\}$

$$
J=t^{r} J_{r}
$$

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87)

Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})
$\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right] \begin{aligned} & \text { (intersection of two polynomials of bi-degrees } \\ & (0,4) \text { and }(2,1) \text { in } \mathbb{P}^{1} \times \mathbb{P}^{4}\end{aligned}$
ological data: $h^{1,1}(X), h^{2,1}(X), c_{2}(T X)=c_{2}^{r}(T X) J_{r}, d_{r s t}=\int_{X} J_{r} \wedge J_{s} \wedge J_{t}$
Focus on 5000 "favourable" Cicys: $h^{1,1}(X)=m=\# \mathbb{P} s, H^{2}(X)=\operatorname{Span}\left\{J_{r}\right\}$

$$
J=t^{r} J_{r}
$$

Line bundles: $\mathcal{O}_{X}\left(k^{1}, \ldots, k^{m}\right)$ with $c_{1}\left(\mathcal{O}_{X}(\mathbf{k})\right)=k^{r} J_{r}$

Complete intersection CY manifolds (Cicys)

complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87) Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})
$\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right] \begin{aligned} & \text { (intersection of two polynomials of bi-degrees } \\ & (0,4) \text { and }(2,1) \text { in } \mathbb{P}^{1} \times \mathbb{P}^{4}\end{aligned}$
ological data: $h^{1,1}(X), h^{2,1}(X), c_{2}(T X)=c_{2}^{r}(T X) J_{r}, d_{r s t}=\int_{X} J_{r} \wedge J_{s} \wedge J_{t}$
Focus on 5000 "favourable" Cicys: $h^{1,1}(X)=m=\# \mathbb{P} s, H^{2}(X)=\operatorname{Span}\left\{J_{r}\right\}$

$$
J=t^{r} J_{r}
$$

Line bundles: $\mathcal{O}_{X}\left(k^{1}, \ldots, k^{m}\right)$ with $c_{1}\left(\mathcal{O}_{X}(\mathbf{k})\right)=k^{r} J_{r}$
Using spectral sequences and tensor methods we can calculate the cohomology $h^{q}\left(X, \mathcal{O}_{X}(\mathbf{k})\right)$ of all line bundles!

Complete intersection CY manifolds (Cicys)

Complete classification of about 8000 spaces.
(Hubsch, Green, Lutken, Candelas '87) Intersections of polynomial zero-loci in ambient space $\mathcal{A}=\bigotimes_{r=1}^{m} \mathbb{P}^{n_{r}}$ with Kahler forms J_{1}, \ldots, J_{m}
Examples: $\left[\mathbb{P}^{4} \mid 5\right]$
(quintic polynomial in \mathbb{P}^{4})
$\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right] \begin{aligned} & \text { (intersection of two polynomials of bi-degrees } \\ & (0,4) \text { and }(2,1) \text { in } \mathbb{P}^{1} \times \mathbb{P}^{4}\end{aligned}$
pological data: $h^{1,1}(X), h^{2,1}(X), c_{2}(T X)=c_{2}^{r}(T X) J_{r}, d_{r s t}=\int_{X} J_{r} \wedge J_{s} \wedge J_{t}$
Focus on 5000 "favourable" Cicys: $h^{1,1}(X)=m=\# \mathbb{P} s, H^{2}(X)=\operatorname{Span}\left\{J_{r}\right\}$

$$
J=t^{r} J_{r}
$$

Line bundles: $\mathcal{O}_{X}\left(k^{1}, \ldots, k^{m}\right)$ with $c_{1}\left(\mathcal{O}_{X}(\mathbf{k})\right)=k^{r} J_{r}$
Using spectral sequences and tensor methods we can calculate the cohomology $h^{q}\left(X, \mathcal{O}_{X}(\mathbf{k})\right)$ of all line bundles!

In particular: $h^{0}\left(X, \mathcal{O}_{X}(\mathbf{k})\right)>0$ if all $k^{r} \geq 0$
$h^{0}\left(X, \mathcal{O}_{X}(\mathbf{k})\right)$ only non-zero cohomology if all $k^{r}>0$

Monads

Definition: A monad bundle V on X defined by short exact sequence

$$
0 \rightarrow V \rightarrow B \stackrel{f}{\rightarrow} C \rightarrow 0 \quad(\text { hence } V=\operatorname{Ker}(f))
$$

where $B=\bigoplus_{i=1}^{r_{B}} \mathcal{O}_{X}\left(\mathbf{b}_{i}\right), \quad C=\bigoplus_{a=1}^{r_{C}} \mathcal{O}_{X}\left(\mathbf{c}_{a}\right)$ and $\mathbf{c}_{a}>\mathbf{b}_{i}$.

Monads

Definition: A monad bundle V on X defined by short exact sequence

$$
0 \rightarrow V \rightarrow B \stackrel{f}{\rightarrow} C \rightarrow 0 \quad(\text { hence } V=\operatorname{Ker}(f))
$$

where $B=\bigoplus_{i=1}^{r_{B}} \mathcal{O}_{X}\left(\mathbf{b}_{i}\right), \quad C=\bigoplus_{a=1}^{r_{C}} \mathcal{O}_{X}\left(\mathbf{c}_{a}\right)$ and $\mathbf{c}_{a}>\mathbf{b}_{i}$.
Then V is a vector bundle on X !

Monads

Definition: A monad bundle V on X defined by short exact sequence

$$
0 \rightarrow V \rightarrow B \stackrel{f}{\rightarrow} C \rightarrow 0 \quad(\text { hence } V=\operatorname{Ker}(f))
$$

where $B=\bigoplus_{i=1}^{r_{B}} \mathcal{O}_{X}\left(\mathbf{b}_{i}\right), \quad C=\bigoplus_{a=1}^{r_{C}} \mathcal{O}_{X}\left(\mathbf{c}_{a}\right)$ and $\mathbf{c}_{a}>\mathbf{b}_{i}$.
Then V is a vector bundle on X !
The map f can be seen as a matrix of polynomials with degree $\mathbf{c}_{a}-\mathbf{b}_{i}$

Monads

Definition: A monad bundle V on X defined by short exact sequence

$$
0 \rightarrow V \rightarrow B \stackrel{f}{\rightarrow} C \rightarrow 0 \quad(\text { hence } V=\operatorname{Ker}(f))
$$

where $B=\bigoplus_{i=1}^{r_{B}} \mathcal{O}_{X}\left(\mathbf{b}_{i}\right), \quad C=\bigoplus_{a=1}^{r_{C}} \mathcal{O}_{X}\left(\mathbf{c}_{a}\right)$ and $\mathbf{c}_{a}>\mathbf{b}_{i}$.
Then V is a vector bundle on X !
The map f can be seen as a matrix of polynomials with degree $\mathbf{c}_{a}-\mathbf{b}_{i}$ Properties: $n=\operatorname{rank}(V)=r_{B}-r_{C} \stackrel{!}{\in}\{3,4,5\}$

$$
\begin{aligned}
c_{1}^{r}(V) & =\sum_{i} b_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0 \\
c_{2 r}(V) & =\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X) \\
c_{3}(V) & =\frac{1}{3} d_{r s t}\left(\sum_{i} b_{i}^{r} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{r} c_{a}^{s} c_{a}^{t}\right)
\end{aligned}
$$

Monads

Definition: A monad bundle V on X defined by short exact sequence

$$
0 \rightarrow V \rightarrow B \stackrel{f}{\rightarrow} C \rightarrow 0 \quad(\text { hence } V=\operatorname{Ker}(f))
$$

$$
\text { where } B=\bigoplus_{i=1}^{r_{B}} \mathcal{O}_{X}\left(\mathbf{b}_{i}\right), \quad C=\bigoplus_{a=1}^{r_{C}} \mathcal{O}_{X}\left(\mathbf{c}_{a}\right) \text { and } \mathbf{c}_{a}>\mathbf{b}_{i} .
$$

Then V is a vector bundle on X !
The map f can be seen as a matrix of polynomials with degree $\mathbf{c}_{a}-\mathbf{b}_{i}$ Properties: $n=\operatorname{rank}(V)=r_{B}-r_{C} \stackrel{!}{\in}\{3,4,5\}$

$$
\begin{aligned}
c_{1}^{r}(V) & =\sum_{i} b_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0 \\
c_{2 r}(V) & =\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X) \\
c_{3}(V) & =\frac{1}{3} d_{r s t}\left(\sum_{i} b_{i}^{r} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{r} c_{a}^{s} c_{a}^{t}\right)
\end{aligned}
$$

Long exact sequence: $0 \rightarrow H^{0}(X, V) \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\rightarrow H^{1}(X, V) \rightarrow H^{1}(X, B) \rightarrow H^{1}(X, C)
$$

$$
\rightarrow H^{2}(X, V) \rightarrow H^{2}(X, B) \rightarrow H^{2}(X, C)
$$

$$
\rightarrow H^{3}(X, V) \rightarrow H^{3}(X, B) \rightarrow H^{3}(X, C) \rightarrow 0
$$

Positive Monads, stability and spectrum

Started with "traditional" positive monads satisfying $b_{i}^{r}>0, c_{a}^{r}>0$

Positive Monads, stability and spectrum

Started with "traditional" positive monads satisfying $b_{i}^{r}>0, c_{a}^{r}>0$
Constraints $c_{1}^{r}(V)=\sum_{i} r_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0$ and $c_{2 r}(V)=\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X)$ imply that the number of positive monads is finite.

Positive Monads, stability and spectrum

Started with "traditional" positive monads satisfying $b_{i}^{r}>0, c_{a}^{r}>0$
Constraints $c_{1}^{r}(V)=\sum_{i} b_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0$ and $c_{2 r}(V)=\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X)$ imply that the number of positive monads is finite.

In fact, such monads exist on only 63 Cicys and there are about 7000 of them.

Positive Monads, stability and spectrum

Started with "traditional" positive monads satisfying $b_{i}^{r}>0, c_{a}^{r}>0$
Constraints $c_{1}^{r}(V)=\sum_{i} r_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0$ and $c_{2 r}(V)=\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X)$ imply that the number of positive monads is finite.

In fact, such monads exist on only 63 Cicys and there are about 7000 of them.

For example, 126 positive monads on $\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right]$. First 10 of those:

$$
\left.\begin{array}{l}
\left\{\left\{\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right),\left(\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right)\right\},\left\{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) 1\right.\right. \\
1
\end{array} 1-1\right) 1
$$

Positive Monads, stability and spectrum

Started with "traditional" positive monads satisfying $b_{i}^{r}>0, c_{a}^{r}>0$
Constraints $c_{1}^{r}(V)=\sum_{i} r_{i}^{r}-\sum_{a} c_{a}^{r} \stackrel{!}{=} 0$ and $c_{2 r}(V)=\frac{1}{2} d_{r s t}\left(\sum_{i} b_{i}^{s} b_{i}^{t}-\sum_{a} c_{a}^{s} c_{a}^{t}\right) \stackrel{!}{\leq} c_{2 r}(T X)$ imply that the number of positive monads is finite.

In fact, such monads exist on only 63 Cicys and there are about 7000 of them.

For example, 126 positive monads on $\left[\begin{array}{l|ll}\mathbb{P}^{1} & 0 & 2 \\ \mathbb{P}^{4} & 4 & 1\end{array}\right]$. First 10 of those:

Stability

Since $\mu(V)=0$ we need $\mu(\mathcal{F})<0$ for all $\mathcal{F} \subset V$. We have

$$
\mu(\mathcal{F}) \sim \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J=d_{r s t} c_{1}^{r}(\mathcal{F}) t^{s} t^{t}=c_{1}(\mathcal{F}) \cdot \mathbf{s}
$$

where $s_{r}=d_{r s t} t^{s} t^{t} \in \mathcal{C}(X)$, the Kahler cone of X.

Stability

Since $\mu(V)=0$ we need $\mu(\mathcal{F})<0$ for all $\mathcal{F} \subset V$. We have

$$
\mu(\mathcal{F}) \sim \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J=d_{r s t} c_{1}^{r}(\mathcal{F}) t^{s} t^{t}=c_{1}(\mathcal{F}) \cdot \mathbf{s}
$$

where $s_{r}=d_{r s t} t^{s} t^{t} \in \mathcal{C}(X)$, the Kahler cone of X.

Suppose $h^{11}(X)=1$. Then $\mathcal{C}(X)=\{s \geq 0\}$. Now assume $\mathcal{F} \subset V$ is a destabilizing bundle, that is $\mu(\mathcal{F}) \geq 0$. Then $c_{1}(\mathcal{F}) \geq 0$. Define line bundle $L=\Lambda^{\mathrm{rk}(\mathcal{F})} \mathcal{F}$. It follows that $c_{1}(L) \geq 0$ so that $L=\mathcal{O}_{X}(k), k \geq 0$ and $h^{0}(X, L)>0$. Since $L \subset \Lambda^{\mathrm{rk}(\mathcal{F})} V$ this implies $h^{0}\left(X, \Lambda^{\mathrm{rk}(\mathcal{F})} V\right)>0$.

Stability

Since $\mu(V)=0$ we need $\mu(\mathcal{F})<0$ for all $\mathcal{F} \subset V$. We have

$$
\mu(\mathcal{F}) \sim \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J=d_{r s t} c_{1}^{r}(\mathcal{F}) t^{s} t^{t}=c_{1}(\mathcal{F}) \cdot \mathbf{s}
$$

where $s_{r}=d_{r s t} t^{s} t^{t} \in \mathcal{C}(X)$, the Kahler cone of X.

Suppose $h^{11}(X)=1$. Then $\mathcal{C}(X)=\{s \geq 0\}$. Now assume $\mathcal{F} \subset V$ is a destabilizing bundle, that is $\mu(\mathcal{F}) \geq 0$. Then $c_{1}(\mathcal{F}) \geq 0$. Define line bundle $L=\Lambda^{\mathrm{rk}(\mathcal{F})} \mathcal{F}$. It follows that $c_{1}(L) \geq 0$ so that $L=\mathcal{O}_{X}(k), k \geq 0$ and $h^{0}(X, L)>0$. Since $L \subset \Lambda^{\mathrm{rk}(\mathcal{F})} V$ this implies $h^{0}\left(X, \Lambda^{\mathrm{rk}(\mathcal{F})} V\right)>0$.

Conclusion: A vector bundle V on a cyclic Cicy $X\left(h^{11}(X)=1\right)$ satisfying $h^{0}\left(X, \Lambda^{q} V\right)=0$ for $q=1, \ldots, \operatorname{rk}(V)-1$ is stable. (Hoppe's criterion)

Stability

Since $\mu(V)=0$ we need $\mu(\mathcal{F})<0$ for all $\mathcal{F} \subset V$. We have

$$
\mu(\mathcal{F}) \sim \int_{X} c_{1}(\mathcal{F}) \wedge J \wedge J=d_{r s t} c_{1}^{r}(\mathcal{F}) t^{s} t^{t}=c_{1}(\mathcal{F}) \cdot \mathbf{s}
$$

where $s_{r}=d_{r s t} t^{s} t^{t} \in \mathcal{C}(X)$, the Kahler cone of X.

Suppose $h^{11}(X)=1$. Then $\mathcal{C}(X)=\{s \geq 0\}$. Now assume $\mathcal{F} \subset V$ is a destabilizing bundle, that is $\mu(\mathcal{F}) \geq 0$. Then $c_{1}(\mathcal{F}) \geq 0$. Define line bundle $L=\Lambda^{\mathrm{rk}(\mathcal{F})} \mathcal{F}$. It follows that $c_{1}(L) \geq 0$ so that $L=\mathcal{O}_{X}(k), k \geq 0$ and $h^{0}(X, L)>0$. Since $L \subset \Lambda^{\mathrm{rk}(\mathcal{F})} V$ this implies $h^{0}\left(X, \Lambda^{\mathrm{rk}(\mathcal{F})} V\right)>0$.

Conclusion: A vector bundle V on a cyclic Cicy $X\left(h^{11}(X)=1\right)$ satisfying $h^{0}\left(X, \Lambda^{q} V\right)=0$ for $q=1, \ldots, \operatorname{rk}(V)-1$ is stable. (Hoppe's criterion)

There are 5 cyclic Cicys with a total of 37 positive monad bundles and using this criterion we have shown they are all stable.

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region
Stability in part of the Kahler cone can be checked for 1500 bundles in this way!

Not bad, but we want to get control over a large numbers of examples! Next, consider Cicys with $h^{1,1}=2$ (32 cases).

$c_{1}(\mathcal{F})$ positive: exclude by demanding Hoppe's criterion $H^{0}\left(X, \Lambda^{q} V\right)=0$
$c_{1}(\mathcal{F})$ negative: do not de-stabilise any part of Kahler cone
$c_{1}(\mathcal{F})$ mixed: can check that $\operatorname{Hom}(L, V) \simeq H^{0}\left(X, L^{\star} \times V\right)=0$ except for blue region
Stability in part of the Kahler cone can be checked for 1500 bundles in this way!

We conjecture that all positive monad bundles on Cicys are stable.

Spectrum

Families, anti-families: $0 \rightarrow H^{0}(X, V) \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\rightarrow H^{1}(X, V) \rightarrow H^{1}(X, B) \rightarrow H^{1}(X, C)
$$

$$
\rightarrow H^{2}(X, V) \rightarrow H^{2}(X, B) \rightarrow H^{2}(X, C)
$$

$$
\rightarrow H^{3}(X, V) \rightarrow H^{3}(X, B) \rightarrow H^{3}(X, C) \rightarrow 0
$$

Spectrum

Families, anti-families: $0 \rightarrow H^{0}(X, V) \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\begin{array}{llll}
\rightarrow H^{1}(X, V) & \rightarrow & \rightarrow & \\
\rightarrow H^{2}(X, V) & \rightarrow & \rightarrow & \rightarrow 0 \\
\rightarrow H^{3}(X, V) & \rightarrow & \rightarrow & \rightarrow
\end{array}
$$

Spectrum

Families, anti-families: $0 \rightarrow H^{0}(X, V) \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\begin{array}{lllll}
\rightarrow & H^{1}(X, V) & \rightarrow & 0 & \rightarrow \\
\rightarrow & H^{2}(X, V) & \rightarrow & 0 & \rightarrow \\
\rightarrow & 0 \\
\rightarrow & H^{3}(X, V) & \rightarrow & 0 & \rightarrow
\end{array} 0 \quad \rightarrow 0
$$

Zero since B and C are positive.

Spectrum

Families, anti-families: $0 \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\begin{array}{lllll}
\rightarrow & H^{1}(X, V) & \rightarrow & 0 & \rightarrow \\
\rightarrow & 0 \\
\rightarrow & H^{2}(X, V) & \rightarrow & 0 & \rightarrow \\
\rightarrow & & 0 & \rightarrow & 0
\end{array}
$$

Zero since B and C are positive.

Spectrum

Families, anti-families: $0 \rightarrow 0 \rightarrow H^{0}(X, B) \rightarrow H^{0}(X, C)$

$$
\begin{array}{lcllll}
\rightarrow & H^{1}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\
\rightarrow & H^{2}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\
\rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
$$

Zero since B and C are positive. Zero since V is stable.

Spectrum

$\begin{array}{cccccccc}\text { Families, anti-families: } 0 & \rightarrow & 0 & \rightarrow & H^{0}(X, B) & \rightarrow & H^{0}(X, C) \\ & \rightarrow & H^{1}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\ & \rightarrow & H^{2}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\ & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow 0\end{array}$
Zero since B and C are positive. Zero since V is stable.

It follows: \#anti-families $h^{2}(X, V)=0$ \#families $h^{1}(X, V)=h^{0}(X, C)-h^{0}(X, B)$

Spectrum

Families, anti-families: 0

$$
\begin{array}{cccccc}
\rightarrow & 0 & \rightarrow & H^{0}(X, B) & \rightarrow & H^{0}(X, C) \\
\rightarrow & H^{1}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\
\rightarrow & H^{2}(X, V) & \rightarrow & 0 & \rightarrow & 0 \\
\rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0
\end{array}
$$

Zero since B and C are positive. Zero since V is stable.

It follows: \#anti-families $h^{2}(X, V)=0$ \#families $h^{1}(X, V)=h^{0}(X, C)-h^{0}(X, B)$

	E6	SO(10)	SU(5)	total
total	5680	1334	104	7118
\#families I 3	3091	207	52	3350
Euler number I 3 2	458	96	5	559

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$)

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.
Example on $\left[\begin{array}{c|c}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{3} & 4\end{array}\right]: 0 \rightarrow V \rightarrow \mathcal{O}_{X}(1,3)^{\oplus 3} \oplus \mathcal{O}_{X}(t, 1) \rightarrow \mathcal{O}_{X}(t+3,1) \rightarrow 0$ for any $t>0$.

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.
Example on $\left[\begin{array}{c|c}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{3} & 4\end{array}\right]: 0 \rightarrow V \rightarrow \mathcal{O}_{X}(1,3)^{\oplus 3} \oplus \mathcal{O}_{X}(t, 1) \rightarrow \mathcal{O}_{X}(t+3,1) \rightarrow 0$ for any $t>0$.
However, topological data of V independent of t, so perhaps class finite after removing equivalent bundles.

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.
Example on $\left[\begin{array}{l|l}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{3} & 4\end{array}\right]: \begin{aligned} & 0 \rightarrow V \rightarrow \mathcal{O}_{X}(1,3)^{\oplus 3} \oplus \mathcal{O}_{X}(t, 1) \rightarrow \mathcal{O}_{X}(t+3,1) \rightarrow 0 \\ & \text { for any } t>0\end{aligned}$
However, topological data of V independent of t, so perhaps class finite after removing equivalent bundles.

Spectrum is computable. Number of anti-families not always zero.

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.
Example on $\left[\begin{array}{c|c}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{3} & 4\end{array}\right]: 0 \rightarrow V \rightarrow \mathcal{O}_{X}(1,3)^{\oplus 3} \oplus \mathcal{O}_{X}(t, 1) \rightarrow \mathcal{O}_{X}(t+3,1) \rightarrow 0$ for any $t>0$.
However, topological data of V independent of t, so perhaps class finite after removing equivalent bundles.

Spectrum is computable. Number of anti-families not always zero.
For now: preliminary scan of semi-positive monad bundles with $b_{i}^{r}, c_{a}^{r} \leq 20$ for all 32 cicys with $h^{11}=2$.

Semi-positive monads

These are monads with $b_{i}^{r} \geq 0, c_{a}^{r} \geq 0$ (rather than $b_{i}^{r}>0, c_{a}^{r}>0$) Basic observation: stability proof still works for many semi-positive bundles!

Problem: It is not clear any more this class is finite! $c_{2}(V) \leq c_{2}(T X)$ and $c_{1}(V)=0$ do not bound b_{i}^{r} and c_{a}^{r} any more.
Example on $\left[\begin{array}{l|l}\mathbb{P}^{1} & 2 \\ \mathbb{P}^{3} & 4\end{array}\right]: \begin{aligned} & 0 \rightarrow V \rightarrow \mathcal{O}_{X}(1,3)^{\oplus 3} \oplus \mathcal{O}_{X}(t, 1) \rightarrow \mathcal{O}_{X}(t+3,1) \rightarrow 0 \\ & \text { for any } t>0 .\end{aligned}$
However, topological data of V independent of t, so perhaps class finite after removing equivalent bundles.

Spectrum is computable. Number of anti-families not always zero.
For now: preliminary scan of semi-positive monad bundles with $b_{i}^{r}, c_{a}^{r} \leq 20$ for all 32 Cicys with $h^{11}=2$.

Leads to appr. 100000 rank 3 bundles .

Number of models with \#families | 3 and Euler number | 3:17255
Number of such models with \#families <= 20:6982

Conclusion and outlook

O Many, probably all positive monad bundles on Cicys are stable and, hence, provide a viable starting point for heterotic model building.

Conclusion and outlook

- Many, probably all positive monad bundles on Cicys are stable and, hence, provide a viable starting point for heterotic model building.

There are about 7000 positive monad bundles on all Cicys. Their complete spectrum has been calculated. In particular, the number of anti-families always vanishes. Even simple physics constraints reduce this number considerably.

Conclusion and outlook

- Many, probably all positive monad bundles on Cicys are stable and, hence, provide a viable starting point for heterotic model building.

There are about 7000 positive monad bundles on all Cicys. Their complete spectrum has been calculated. In particular, the number of anti-families always vanishes. Even simple physics constraints reduce this number considerably.

- Many semi-positive monads are stable. It is not clear at present if this class is finite, but if so it is likely to be huge. Complete spectra can be calculated. The zero-entries help to achieve small numbers of families.

Conclusion and outlook

- Many, probably all positive monad bundles on Cicys are stable and, hence, provide a viable starting point for heterotic model building.

There are about 7000 positive monad bundles on all Cicys. Their complete spectrum has been calculated. In particular, the number of anti-families always vanishes. Even simple physics constraints reduce this number considerably.

- Many semi-positive monads are stable. It is not clear at present if this class is finite, but if so it is likely to be huge. Complete spectra can be calculated. The zero-entries help to achieve small numbers of families.

Things to do...

- Better understand and classify semi-positive monads.

Conclusion and outlook

- Many, probably all positive monad bundles on Cicys are stable and, hence, provide a viable starting point for heterotic model building.

There are about 7000 positive monad bundles on all Cicys. Their complete spectrum has been calculated. In particular, the number of anti-families always vanishes. Even simple physics constraints reduce this number considerably.

Many semi-positive monads are stable. It is not clear at present if this class is finite, but if so it is likely to be huge. Complete spectra can be calculated. The zero-entries help to achieve small numbers of families.

Things to do...

- Better understand and classify semi-positive monads.

Analyse discrete symmetries and introduce Wilson lines. This can be done systematically (e.g. toric symmetries $X^{i} \rightarrow e^{2 \pi i q_{i} / n} X^{i}$). Alternatively, $U(\mathrm{n})$ bundles: twisting $L \times V$ is stable if V is.

- Calculate superpotential (we believe this is possible with computer algebra). Kahler potential?
- Calculate superpotential (we believe this is possible with computer algebra). Kahler potential?

Generalise monads to toric Calabi-Yau manifolds.

- Calculate superpotential (we believe this is possible with computer algebra). Kahler potential?

Generalise monads to toric Calabi-Yau manifolds.

Thanks!

