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wraps holomorphic curve 
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Data defining a heterotic vacuum:

 5-brane class W = [C] ∈ H2(X)

 CY manifold    (Ricci-flat       exists from Yau’s theorem) X g(X)

 holom. bundle   on    (      exist from Donaldson-Uhlenbeck-Yau)XV Aint
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                          ->     must be in Mori cone of           

W C ⊂ X W = [C]
W X

stability of   : condition on   to ensure that      indeed leads to
                 a vanishing gaugino SUSY variation

V V Aint

What is stability?

Slope of a bundle (coherent sheaf)   :F µ(F) = 1
rk(F)

∫
X c1(F) ∧ J ∧ J

A bundle   is stable if                  for all coherent sub-sheafs   V µ(F) < µ(V ) F ⊂ V

Stability of bundles is usually hard to prove!
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Model-building basics
Choose “observable”bundle   with structure group                     ,
where              such that    

V G = SU(n) ⊂ E8

n = 3, 4, 5 c2(TX)− c2(V ) ∈ Mori cone of X

Then anomaly constraint can be satisfied by a suitable 5-brane curve.
E8 → G×H Residual Group Structure

SU(3)× E6 248→ (1,78)⊕ (3,27)⊕ (3,27)⊕ (8,1)

SU(4)× SO(10) 248→ (1,45)⊕ (4,16)⊕ (4,16)⊕ (6,10)⊕ (15,1)

SU(5)× SU(5) 248→ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5)⊕ (24,1)

Table 1: Breaking patterns of E8 and decompositions of the 248 adjoint representation.

Decomposition Cohomologies

SU(3)× E6 n27 = h1(V ), n27 = h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4)× SO(10) n16 = h1(V ), n16 = h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5)× SU(5) n10 = h1(V ∗), n10 = h1(V ), n5 = h1(∧2V ), n5 = h1(∧2V ∗)

n1 = h1(V ⊗ V ∗)

Table 2: Computation of low-energy particle spectra.

where Ad(H) denotes the adjoint representation of H and {(Ri, ri)} is a set of represen-
tations of G×H. The adjoint representation of H corresponds to the low-energy gauge
fields while the low-energy matter fields transform in the representations ri of H. For the
three relevant structure groups these matter field representations are explicitly listed in
Table 1. We may ask how many supermultiplets will occur in the low energy theory for
each representation ri? It turns out that this number is given by nri = h1(X, VRi), the
dimension of the cohomology group H1(X, VRi) of the vector bundle V in the specific
G representation Ri which is paired up with the H representation ri in the decomposi-
tion (3). For G = SU(n), the relevant representations Ri can be obtained by appropriate
tensor products of the fundamental representation and one ends up having to compute
h1(X,V ⊗ V ∗), h1(X, V ), h1(X, V ∗), h1(X,∧2V ), and h1(X,∧2V ∗). Using Serre du-
ality, h1(X, V ∗) = h2(X,V ), the number the low-energy representations can then be
computed as summarized in Table 2. Further, the Atiyah-Singer index theorem [39],
applied to the case c1(TX) = c1(V ) = 0, tells us that the index of V can be expressed
as

ind(V ) =
3∑

p=0

(−1)p hp(X, V ) =
1
2

∫

X
c3(V ) , (4)

where c3(V ) is the third Chern class of V . For a stable bundle, we have h0(X, V ) =
h3(X,V ) = 0 and comparison with Table 2 shows that, in this case, the index counts
the chiral asymmetry, that is, the difference of the number of generations and anti-
generations. The index is usually easier to compute than individual cohomologies and
is useful to impose a physical constraint on the chiral asymmetry.

The heterotic models considered in this paper will be constructed as follows. After
choosing a Calabi-Yau space X (which we will take to be one of the five Calabi-Yau
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Long exact sequence: 0 → H0(X,V )→ H0(X, B)→ H0(X, C)
→ H1(X, V )→ H1(X, B)→ H1(X, C)
→ H2(X, V )→ H2(X, B)→ H2(X, C)
→ H3(X, V )→ H3(X, B)→ H3(X, C)→ 0
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c1(F) ∧ J ∧ J = drstc

r
1(F)tstt = c1(F) · s

where                         , the Kahler cone of    . sr = drstt
stt ∈ C(X) X

Suppose              . Then                    . Now assume         is a 
destabilizing bundle, that is            . Then             . Define line bundle
               . It follows that             so that                      and
                 Since                this implies                        .   

h11(X) = 1 C(X) = {s ≥ 0} F ⊂ V
µ(F) ≥ 0 c1(F) ≥ 0

L = Λrk(F)F c1(L) ≥ 0 L = OX(k), k ≥ 0
h0(X, L) > 0. L ⊂ Λrk(F)V h0(X,Λrk(F)V ) > 0

Conclusion: A vector bundle   on a cyclic Cicy    (              ) satisfying
                                for                         is stable.
              (Hoppe’s criterion)

V X h11(X) = 1
h0(X,ΛqV ) = 0 q = 1, . . . , rk(V )− 1

There are 5 cyclic Cicys with a total of 37 positive monad bundles and
using this criterion we have shown they are all stable.
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Not bad, but we want to get control over a large numbers of examples!
Next, consider Cicys with           (32 cases). h1,1 = 2

s1

s2 C(X) stable here

      positive: exclude by demanding Hoppe’s criterion c1(F) H0(X,ΛqV ) = 0
c1(F)       negative: do not de-stabilise any part of Kahler cone
c1(F)       mixed: can check that                                     except for 
                blue region

Hom(L, V ) ! H0(X, L! × V ) = 0

Stability in part of the Kahler cone can be checked for 1500 bundles
in this way!

We conjecture that all positive monad bundles on Cicys are stable.
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Zero since   is stable. V

It follows: #anti-families
                   #families h1(X, V ) = h0(X, C)− h0(X, B)
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E6 SO(10) SU(5) total
total 5680 1334 104 7118

#families | 3 3091 207 52 3350
Euler number | 3 458 96 5 559
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Figure 2: (a) Histogram for the Euler number, c3(V ), of the positive monads, 5680 of rank 3 (in

red), 1334 of rank 4 (in blue), and 104 of rank 5 (in gray), found over 36 favourable CICYs: the

horizontal axis is c3(V ) and the vertical, the number of bundles; (b) the same data set, but only

taking those monads which have c3(V ) = 3k for some positive integer k and such that k divides

the Euler number of the corresponding CICY.

then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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argument implies that all monads defined using line bundles with either zero or negative
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cannot contain such a bundle for it would force B to have negative entries. Now, were
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on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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Spectrum in detail:
E6 : n27 as above , n2̄7 = 0, n1(V ) = O(100)

SO(10) : n16 as above , n1̄6 = 0, n10 = 0 generically, n1 = O(100)
SU(5) : n10 as above , n1̄0 = 0, n5̄ − n5 = n10, n5̄ = 0 generically, n1 = O(100)
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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- #families

#models

number after imposing
3-family constraint

Example for non-genericity:          bundle on quintic  SO(10)

X {bi} {ci} n16 n1

[4|5] (2, 2, 1, 1, 1, 1) (4, 4) 90 277

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 30 112

(2, 2, 2, 1, 1, 1, 1) (4, 3, 3) 75 236

(2, 2, 2, 2, 1, 1, 1, 1) (3, 3, 3, 3) 60 193

[5|2 4] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 48 159

[5|3 3] (1, 1, 1, 1, 1, 1) (3, 3) 72 213

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 54 166

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 36 113

[6|2 2 3] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 72 213

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 48 145

Table 10: The particle content for the SO(10)-GUT theories arising from our classification of

stable, positive, SU(4) monad bundles V on the Calabi-Yau threefold X. The number n16 of

anti-generations vanishes. The number n10 vanishes for generic choices of the map g in the

monad sequence (18), but can be made non-vanishing with particular choices of g.

in (18) could produce a non-zero value for n10. This problem has been encountered
in Ref. [5, 23, 6] where the spectrum of compactification was shown to depend on the
region of moduli space. Specifically, it was shown that the spectrum takes a generic form
with possible enhancements in special regions of the moduli space; this was dubbed the
“jumping phenomenon” in [23, 6].

To see that a similar phenomenon can arise for monad bundles, let is consider the
following SU(4) bundle on the quintic, [4|5].

0→ V → O⊕2
X (2)⊕O⊕4

X (1) g−→ O⊕2
X (4)→ 0 . (56)

This bundle and its particle content for a generic map g is given in the first line of
Table 10. Now we explicitly define the map g by

g =

(
4x2

3 9x2
0 + x2

2 8x3
2 2x3

3 4x3
1 9x3

1

x2
0 + 10x2

2 x2
1 9x3

2 7x3
3 9x3

1 + x3
2 x3

1 + 7x3
4

)
. (57)

where x0, . . . , x4 are the homogeneous coordinates of P4. This choice for g is no longer
completely generic, although the sequence (56) is still exact. Following the steps in
Appendix A.4, we can use Macaulay to calculate the spectrum for this case. We find

n16 = 90 , n16 = 0 , n10 = 13 , n1 = 277 . (58)

This is identical to the generic result in Table 10, except for the number of 10 represen-
tations which has changed from 0 to 13.
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Spectrum in detail:
E6 : n27 as above , n2̄7 = 0, n1(V ) = O(100)

SO(10) : n16 as above , n1̄6 = 0, n10 = 0 generically, n1 = O(100)
SU(5) : n10 as above , n1̄0 = 0, n5̄ − n5 = n10, n5̄ = 0 generically, n1 = O(100)
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then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)
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this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :
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embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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Example for non-genericity:          bundle on quintic  SO(10)

X {bi} {ci} n16 n1

[4|5] (2, 2, 1, 1, 1, 1) (4, 4) 90 277

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 30 112

(2, 2, 2, 1, 1, 1, 1) (4, 3, 3) 75 236

(2, 2, 2, 2, 1, 1, 1, 1) (3, 3, 3, 3) 60 193

[5|2 4] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 48 159

[5|3 3] (1, 1, 1, 1, 1, 1) (3, 3) 72 213

(1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 54 166

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 36 113

[6|2 2 3] (1, 1, 1, 1, 1, 1, 1) (3, 2, 2) 72 213

(1, 1, 1, 1, 1, 1, 1, 1) (2, 2, 2, 2) 48 145

Table 10: The particle content for the SO(10)-GUT theories arising from our classification of

stable, positive, SU(4) monad bundles V on the Calabi-Yau threefold X. The number n16 of

anti-generations vanishes. The number n10 vanishes for generic choices of the map g in the

monad sequence (18), but can be made non-vanishing with particular choices of g.

in (18) could produce a non-zero value for n10. This problem has been encountered
in Ref. [5, 23, 6] where the spectrum of compactification was shown to depend on the
region of moduli space. Specifically, it was shown that the spectrum takes a generic form
with possible enhancements in special regions of the moduli space; this was dubbed the
“jumping phenomenon” in [23, 6].

To see that a similar phenomenon can arise for monad bundles, let is consider the
following SU(4) bundle on the quintic, [4|5].

0→ V → O⊕2
X (2)⊕O⊕4

X (1) g−→ O⊕2
X (4)→ 0 . (56)

This bundle and its particle content for a generic map g is given in the first line of
Table 10. Now we explicitly define the map g by

g =

(
4x2

3 9x2
0 + x2

2 8x3
2 2x3

3 4x3
1 9x3

1

x2
0 + 10x2

2 x2
1 9x3

2 7x3
3 9x3

1 + x3
2 x3

1 + 7x3
4

)
. (57)

where x0, . . . , x4 are the homogeneous coordinates of P4. This choice for g is no longer
completely generic, although the sequence (56) is still exact. Following the steps in
Appendix A.4, we can use Macaulay to calculate the spectrum for this case. We find

n16 = 90 , n16 = 0 , n10 = 13 , n1 = 277 . (58)

This is identical to the generic result in Table 10, except for the number of 10 represen-
tations which has changed from 0 to 13.
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Spectrum in detail:
E6 : n27 as above , n2̄7 = 0, n1(V ) = O(100)

SO(10) : n16 as above , n1̄6 = 0, n10 = 0 generically, n1 = O(100)
SU(5) : n10 as above , n1̄0 = 0, n5̄ − n5 = n10, n5̄ = 0 generically, n1 = O(100)
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Figure 2: (a) Histogram for the Euler number, c3(V ), of the positive monads, 5680 of rank 3 (in

red), 1334 of rank 4 (in blue), and 104 of rank 5 (in gray), found over 36 favourable CICYs: the

horizontal axis is c3(V ) and the vertical, the number of bundles; (b) the same data set, but only

taking those monads which have c3(V ) = 3k for some positive integer k and such that k divides

the Euler number of the corresponding CICY.

then Hq(X,B) and Hq(X,C) would vanish for q < 3. Hence, the bottem line of (7.2)

would be short exact and h3(X,V ) = h3(X,B) − h3(X,C). However, this means that

h3(X,V ) is generically non-zero and stability is manifestly violated. Thus, as mentioned

previously, negative monads are immediately unstable and we do not consider them in

this work.

It is worth noting that for the case of cyclic Calabi-Yaus studied in [17], the above

argument implies that all monads defined using line bundles with either zero or negative

entries are unstable. Thus, for the five cyclic Calabi-Yau 3-folds, the positive bundles

classified in [17] are a complete list of all possible bundles defined by (4.11). Clearly, C

cannot contain such a bundle for it would force B to have negative entries. Now, were

B to contain such a summand, then H i(X,B) would be non-vanishing for i = 0, 3 since

on a Calabi-Yau threefold hi=0,3(X,OX ) = 1. Then, (7.2) would imply that H3(X,V ∗)

does not vanish except for very finely tuned choices of C. For monads of our concern in

this paper, namely those with positive line bundles, we can proceed further and translate

the condition (2.3) into certain numerical criteria.

First, let us consider H3(X,V ) " H0(X,V ∗). Let X be a CICY of codimension K,

embedded in A a product of projective spaces, and N ∗ is its normal bundle given by

the negative of the configuration matrix. Using our convention that calligraphic font

corresponds to bundles defined on the ambient space, we can write a Koszul sequence,

using (B.16), for the dual bundle V ∗ = V∗|X of V :

0 → V∗ ⊗ ∧KN ∗ → V∗ ⊗ ∧K−1N ∗ → . . . → V∗ ⊗N ∗ → V∗ → V∗|X → 0 . (7.3)
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Table 10: The particle content for the SO(10)-GUT theories arising from our classification of

stable, positive, SU(4) monad bundles V on the Calabi-Yau threefold X. The number n16 of

anti-generations vanishes. The number n10 vanishes for generic choices of the map g in the

monad sequence (18), but can be made non-vanishing with particular choices of g.

in (18) could produce a non-zero value for n10. This problem has been encountered
in Ref. [5, 23, 6] where the spectrum of compactification was shown to depend on the
region of moduli space. Specifically, it was shown that the spectrum takes a generic form
with possible enhancements in special regions of the moduli space; this was dubbed the
“jumping phenomenon” in [23, 6].

To see that a similar phenomenon can arise for monad bundles, let is consider the
following SU(4) bundle on the quintic, [4|5].

0→ V → O⊕2
X (2)⊕O⊕4

X (1) g−→ O⊕2
X (4)→ 0 . (56)

This bundle and its particle content for a generic map g is given in the first line of
Table 10. Now we explicitly define the map g by

g =

(
4x2

3 9x2
0 + x2

2 8x3
2 2x3

3 4x3
1 9x3

1

x2
0 + 10x2

2 x2
1 9x3

2 7x3
3 9x3

1 + x3
2 x3

1 + 7x3
4

)
. (57)

where x0, . . . , x4 are the homogeneous coordinates of P4. This choice for g is no longer
completely generic, although the sequence (56) is still exact. Following the steps in
Appendix A.4, we can use Macaulay to calculate the spectrum for this case. We find

n16 = 90 , n16 = 0 , n10 = 13 , n1 = 277 . (58)

This is identical to the generic result in Table 10, except for the number of 10 represen-
tations which has changed from 0 to 13.
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Spectrum in detail:
E6 : n27 as above , n2̄7 = 0, n1(V ) = O(100)

SO(10) : n16 as above , n1̄6 = 0, n10 = 0 generically, n1 = O(100)
SU(5) : n10 as above , n1̄0 = 0, n5̄ − n5 = n10, n5̄ = 0 generically, n1 = O(100)
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Basic observation: stability proof still works for many semi-positive 
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Problem: It is not clear any more this  class is finite!
           and              do not bound    and    any more.  

c2(V ) ≤ c2(TX)
c1(V ) = 0 br

i cr
a

[
P1

P3

∣∣∣∣
2
4

]
Example on           :
                          for any        . 

0→ V → OX(1, 3)⊕3 ⊕OX(t, 1)→ OX(t + 3, 1)→ 0
t > 0

However, topological data of    independent of  , so perhaps class finite
after removing equivalent bundles. 

V t

For now: preliminary scan of semi-positive monad bundles with
for all 32 Cicys with          . 

br
i , c

r
a ≤ 20

h11 = 2

Leads to appr. 100000 rank 3 bundles .

Spectrum is computable. Number of anti-families not always zero.
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Number of models with #families | 3 and Euler number | 3 : 17255
Number of such models with #families <= 20 : 6982
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   anti-families always vanishes. Even simple physics constraints reduce
   this number considerably.

 Many semi-positive monads are stable. It is not clear at present if
   this class is finite, but if so it is likely to be huge. Complete spectra
   can be calculated. The zero-entries help to achieve small numbers of
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Things to do...

 Better understand and classify semi-positive monads.

 Analyse discrete symmetries and introduce Wilson lines. This can be
   done systematically (e.g. toric symmetries                     ).
   Alternatively, U(n) bundles: twisting         is stable if   is. 

Xi → e2πiqi/nXi

L× V V
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Thanks!


