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Bosonic fields in d=10 Background for N=1 in d=4

metric g g =9g(My) +9(X), where g(X)
Ricci- flat metric on CY X

NS 3-form H H =0 for now (possibly flux
added later)

dilaton ¢ ¢ = const

Eg x Eggauge fields A Aint connection on holomorphic

vector bundle Von X

5-brane embedding X (o) 5-brane stretches across My ,
wraps holomorphic curve C' C X

Data defining a heterotic vacuum:

® CY manifold X (Ricci-flat g( X ) exists from Yau's theorem)
® holom. bundleV on X (A;,;+ exist from Donaldson-Uhlenbeck-Yau)
@ 5-brane class W = [C] € H*(X)
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anomaly cancellation: ca(T'X) —ca(V) =W

effectiveness of W: a hol. curve C' C X with W = [C] needs to exist
-> W must be in Mori cone of X

stability of V: condition onV to ensure that Aj,;indeed leads to
a vanishing gaugino SUSY variation

What is stability?

Slope of a bundle (coherent sheaf) F: u(F) = rk(lf) Jx cal(F)NINT

A bundle Vis stable if ©(F) < (V') for all coherent sub-sheafs F C V

Stability of bundles is usually hard to prove!
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index ind(V) :;::0(—1) hP(X,V) = 5/){63(‘/)

stable bundles: n°(X, V) =r3(X,V) =0 -> chiral asymmetry
Finally: Discrete symmetry, Wilson line to break to Ggy x U(1)™?

Alternatively, use U(n) bundles. (Blumenhagen et al. '06)
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Intersections of polynomial zero-loci in ambient space A = ), , P"r
with Kahler forms Ji,...,J,
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Known fopological data: h':!(X), b1 (X)), co(TX) = (T X) Iy, dypse = [ Jr AT N Ty

Focus on 5000 “favourable” Cicys: h'''(X) = m = #Ps, H*(X) = Span{J,}
e

Line bundles: Ox (k', ..., k™) with ¢; (Ox(k)) = k" J,

Using spectral sequences and tensor methods we can calculate the
cohomology h? (X, Ox(k)) of all line bundles!

In particular: 2 (X, Ox(k)) > 0 if all k" >0
h?(X,Ox(k)) only non-zero cohomology if all & > 0
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Monads

Definition: A monad bundleV on X defined by short exact sequence

OHVﬁBLCHO (hence V. = Ker(f) )

where 5 = @2231 Ox(b;), C = @221 Ox(ca) and ¢, > b;.

Then V is a vector bundle on X!

The map f can be seen as a matrix of polynomials with degree c, — b;
!

Properties: n =rank(V) =rg —rc € {3,4,5}
(V) = T8 — e =0
car(V) = Tdnoe (5, B30 — 35, 364) < 0n(TX)
c3(Vl) = gdrst (D0, 070508 = >~ cheict)

Long exact sequence: 0
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Stability
Since (V) = 0 we need u(F) < 0 for all F C V. We have
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Since (V) = 0 we need u(F) < 0 for all F C V. We have

,u(]:)w/ cll R A st el RN = e (R ) 8
X

where s, = d,t°t" € C(X), the Kahler cone of X .

Suppose h''(X) =1.Then C(X) = {s > 0}. Now assume F C Vis a
destabilizing bundle, that is #(F) = 0. Then c1(F) > 0. Define line bundle
L =A™ F 1t follows that c1(L) >0 so that L = Ox(k), k > 0 and

WY (X, L) > 0. Since L C AV this implies h°(X, A™F)V) > 0.

Conclusion: A vector bundle Von a cyclic Cicy X (h''(X) = 1) satisfying
hO(X,A%V) =0 for g=1,...,1k(V) — 1 is stable.
(Hoppes criterion)

There are 5 cyclic Cicys with a total of 37 positive monad bundles and
using this criterion we have shown they are all stable.
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Next, consider Cicys with h1'1 = 2 (32 cases).

X

S2, i()/s’rable here

c1(F) positive: exclude by demanding Hoppe's criterion H°(X,A?V) =0

c1(F) negative: do not de-stabilise any part of Kahler cone

c1(F) mixed: can check that Hom(L,V) ~ H%(X,L* x V) = 0 except for
blue region

Stability in part of the Kahler cone can be checked for 1500 bundles

in this way!

We conjecture that all positive monad bundles on Cicys are stable.
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Families, anti-families: 0

H(
H=(

0
X,V)
X,V)

Zero since Band C are positive. Zero since V is stable.

It follows: #anti-families h?(X,V) =0
families h'(X, V) = hO(X, C) — hO(X, B)

SOGo) | SU)
total 1334 104

#tamilies | 3 207 52

Euler number | 3 96 5
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Spectrum in deftail:
Eg : na7 as above , ngy = 0, n (V) = O(100)

SO(10) : n1g as above , ng = 0, n1g = 0 generically, n; = O(100)

SU(5) : n1g as above , nyy = 0, ng — ns = nig, ng = 0 generically, n; = O(100)

Example for non-genericity: SO(10) bundle on quintic

0V 02 8 0% (1) 2 OPU) 0. g- (

423 Ort + x5 8x3 213 423 9x3
13 + 1023 T’ 95 T3 9z + x5 7} + Tx)

With Macaulay: n =90, g = O , i T
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Semi-positive monads
These are monads with b > 0, ¢ > 0 (rather than b0; >0, c;, > 0)

Basic observation: stability proof still works for many semi-positive
bundles!

Problem: It is not clear any more this class is finite! c2(V) < co(TX)
and c¢;(V) =0 do not bound b] and ¢, any more.

Example on [ 53 Z ] : (]2—> V —;(3;6(1,3)@3 ®Ox(t,1) - Ox(t+3,1) — 0
or any .

However, topological data of V' independent of t, so perhaps class finite
after removing equivalent bundles.

Spectrum is computable. Number of anti-families not always zero.

For now: preliminary scan of semi-positive monad bundles with b}, ¢! < 20

1

for all 32 Cicys with h'! = 2.
Leads to appr. 100000 rank 3 bundles .
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Number of models with #families | 3 and Euler number | 3 : 17255

Number of such models with #families <= 20 : 6982
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® There are about 7000 positive monad bundles on all Cicys. Their
complete spectrum has been calculated. In particular, the number of
anti-families always vanishes. Even simple physics constraints reduce
this number considerably.

® Many semi-positive monads are stable. It is not clear at present if

this class is finite, but if so it is likely to be huge. Complete spectra
can be calculated. The zero-entries help to achieve small numbers of
families.

Things to do...

® Better understand and classify semi-positive monads.

® Analyse discrete symmetries and introduce Wilson lines. This can be
done systematically (e.g. toric symmetries X? — e2miai/n x4 ),
Alternatively, U(n) bundles: twisting L x V is stable if Vis.
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® Calculate superpotential (we believe this is possible with computer
algebra). Kahler potential?

® Generalise monads to toric Calabi-Yau manifolds.

Thanks!




