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1. Introduction

Utilizing the free fermionic construction in heterotic superstring, we obtain a plethora
of chiral N = 1 SUSY vacua in four space-time dimensions.
I. Antoniadis, C. Bachas, and C. Kounnas, 1987
H. Kawai, D.C. Lewellen, and S.H.-H. Tye, 1987

Many of them are quasi-realistic:

i) Three generations
ii) Correct quantum numbers under SU(3)× SU(2)× U(1) of the SM
I. Antoniadis, J. Ellis, J. Hagelin and D.V. Nanopoulos,1989

A.E. Faraggi, D.V. Nanopoulos and K. Yuan, 1990
I. Antoniadis. G.K. Leontaris and J. Rizos, 1990161;
A.E. Faraggi, 1992, G.B. Cleaver, A.E. Faraggi and D.V. Nanopoulos, 1999
G.K. Leontaris and J. Rizos, 1999



Some of the free fermionic models corresponds to Z2 × Z2 orbifolds:
C. Kounnas 1995 ; E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, 1996,1997
E. Kiritsis and C. Kounnas, 1997 ; A. Gregori, C. Kounnas and J. Rizos, 1999
A. Gregori and C. Kounnas, 1999; A.E. Faraggi, C. Kounnas, S.E.M. Nooij and J.
Rizos 2004 ; A.E. Faraggi, C. Kounnas and J. Rizos 2006, 2007

i) Symmetric orbifolds

ii) Asymmetric orbifolds

iii) (Quasi-) Freely acting orbifolds

A special subclass of the free fermionic vacua correspond to symmetric Z2 × Z2

(freely acting) orbifold at enhanced symmetry points in the toroidal moduli space.

In this subclass of models the chiral matter spectrum arises from twisted sectors only
and thus does not depend on the moduli.



This allows the development of a complete classification of Z2×Z2 symmetric orbifolds
via the free fermionic formalism.

The free fermionic construction provides powerful and systematic techniques which
facilitate developing a computerized classification algorithm for the twisted matter
chiral spectrum.

This fact is of basic importance since it enables a systematic analysis of all the models
according to the number of spinorial, anti–spinorial and vectorial representations of
an underlining SO(10) gauge group, in algebraic formulas.

Our classification allows us to scan a range of over 1016 symmetric Z2 × Z2 orbifold
vacua.

The space of vacua arises from a set of independent generalize GSO projection
coefficients c

[
bi
bj

]
, which correspond a matrix with elements taking values ±1.



The independent elements of this matrix correspond to the upper block of this matrix.
All other elements are fixed by modular invariance and the higher genus factorization
of the partition function.

Our classification basis contains 12 vectors. Therefore, the number of independent
GGSO projection coefficients is 66 −→ 266 different vacua.

Requiring N = 1 space–time supersymmetry reduces the number of independent
phases to 55 −→ 255 different vacua.



2. The world-sheet heterotic degrees of freedom; the SO(10) basis sets

• 2 left- and 2 right-moving space time coordinates:

∂Xµ , ∂̄Xµ

• 6 compact left- and right-moving internal fermionised coordinates:

∂X i ≡ yi ωi ∂̄X i ≡ ȳi ω̄i i = 1, . . . , 6

• 8 left-moving super-coordinates:

S = {ψµ, χ1,...,6}

• 32 real or 16 complex right moving 2d-fermions:

x = {η̄1, η̄2, η̄3, ψ̄1,...,5},
z1 = {φ̄1,...,4}
z2 = {φ̄5,...,8}



The heterotic string, (in the light-cone gauge), is described in 4D by 20 left–moving
and 44 right–moving 2d real fermions.

A large number of vacua can be constructed according to the different phases picked
up by the 2d fermions (fA, A = 1, . . . , 44) when transported along the torus non-
contractible loops.

fA → −eiπαi(fA) fA, , A = 1, . . . , 44 .

Each model corresponds to a particular choice of fermion phases consistent with
modular invariance that can be generated by a set of basis vectors vi, i = 1, . . . , n,

vi = {αi(f1), αi(f2), αi(f3)) . . .}

The string spectrum is truncated by a GGSO projection induced by the basis vectors.
Different sets of projection coefficients c

[
vi
vj

]
= ±1 consistent with modular invariance

give rise to different models.



A string model is defined uniquely by a set of basis vectors vi, i = 1, . . . , N and a
set of 2N(N−1)/2 independent projections coefficients c

[
vi
vj

]
, i > j.

The class of models under investigation, is generated by a set of 12 basis vectors

F = {ψµ, χ1,...,6, y1,...,6, ω1,...,6| ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8}

S = {ψµ, χ1,...,6}

ei = {yi, ωi|ȳi, ω̄i}, i = 1, . . . , 6

b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5}

b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5}

z1 = {φ̄1,...,4}
z2 = {φ̄5,...,8}



Generic N=1 SUSY partition function

Z =

∮
dτdτ̄

(Imτ )2

Imτ−1

η(τ )12 η(τ̄ )24

1

2

∑
(a,b)

1

2

∑
(h1,g1)

1

2

∑
(h2,g2)

× (−1)a+b+ab θ [ab ]ψµ θ
[
a+h1
b+g1

]
χ12

θ
[
a+h2
b+g2

]
χ34

θ
[
a+h3
b+g3

]
χ56

× 1

2

∑
(ε1,ζ1)

θ̄
[
ε1
ζ1

]5

ψ̄12345
θ̄
[
ε1+h1
ζ1+g1

]
η̄1

θ̄
[
ε1+h2
ζ1+g2

]
η̄2

θ̄
[
ε1+h3
ζ1+g3

]
η̄3

× 1

2

∑
(ε2,ζ2)

1

2

∑
(H,G)

θ̄
[
ε2
ζ2

]4

φ̄1234
(−)HG θ̄

[
ε2+H
ζ2+G

]4

φ̄5678

× 1

26

∑
(γi,δi)

Γ6,6

[
γi, hI
δi, gI

]
ωi,yi

× (−)Φ[(hI ,gI), (γi,δi), (εi,ζi), (H,G)]



In the fermionic formulation the hI−twisted and γi−shifted Γ6,6

[
γi, hI
δi, gI

]
ωi,yi

lattice,

take the following form ( h3 = −h1 − h2, g3 = −g1 − g2 ):

Γ6,6

[
γi, hI
δi, gI

]
ωi,yi
≡

× θ
[
γ1
δ1

]1
2

ω1
θ̄
[
γ1
δ1

]1
2

ω̄1
θ
[
γ1+h1
δ1+g1

]1
2

y1
θ̄
[
γ1+h1
δ1+g1

]1
2

ȳ1
× θ

[
γ2
δ2

]1
2

ω2
θ̄
[
γ2
δ2

]1
2

ω̄2
θ
[
γ2+h1
δ1+g1

]1
2

y2
θ̄
[
γ2+h1
δ2+g1

]1
2

ȳ2

× θ
[
γ3
δ3

]1
2

ω3
θ̄
[
γ3
δ3

]1
2

ω̄3
θ
[
γ3+h2
δ3+g2

]1
2

y3
θ̄
[
γ3+h2
δ3+g2

]1
2

ȳ3
× θ

[
γ4
δ4

]1
2

ω4
θ̄
[
γ4
δ4

]1
2

ω̄4
θ
[
γ4+h2
δ4+g2

]1
2

y4
θ̄
[
γ4+h2
δ4+g2

]1
2

ȳ4

× θ
[
γ5
δ5

]1
2

ω5
θ̄
[
γ5
δ5

]1
2

ω̄5
θ
[
γ5+h3
δ5+g3

]1
2

y5
θ̄
[
γ5+h3
δ5+g3

]1
2

ȳ5
× θ

[
γ6
δ6

]1
2

ω6
θ̄
[
γ6
δ2

]1
2

ω̄6
θ
[
γ6+h3
δ6+g3

]1
2

y6
θ̄
[
γ6+h3
δ6+g3

]1
2

ȳ6



The generic partition function Z is modular invariant:

τ → τ + 1 :

[ab ]→ [ab+a+1] ,
[
γi
δi

]
→
[
γi
δi+γi+1

]
,
[
εi
ζi

]
→
[
εi
ζi+εi+1

]
,
[
hI
gI

]
→
[
hI
gI+hI

]
,
[
H
G

]
→
[
H
G+H

]
τ → −1

τ
:

[ab ]→
[
b
a

]
,
[
γi
δi

]
→
[
δi
γi

]
,
[
εi
ζi

]
→
[
ζi
εi

]
,
[
hI
gI

]
→
[
gI
hI

]
,
[
H
G

]
→
[
G
H

]
Provided that the phase (−)Φ remain invariant:

(−)Φ[(hI ,gI), (γi,δi), (εi,ζi), (H,G)] −→τ→τ+1
τ→−1

τ
−→ (−)Φ[(hI ,gI), (γi,δi), (εi,ζi), (H,G)]

There are in total 255 independent choices. Some of those are the following:

(−)Φ = 1, (−)γigI+δihI+hIgI , (−)HgI+GhI , (−)γ1δ2+γ2δ3+γ3δ1+δ1γ2+δ2γ3+δ3γ1, ...



Some comments:

• The vectors F, S generate an N = 4 supersymmetric model, with SO(44) gauge
symmetry.

• The vectors ei, i = 1, . . . , 6 give rise to all possible symmetric shifts of the six
internal fermionized coordinates (∂X i = yiωi, ∂̄X i = ȳiω̄i). Their addition breaks
the SO(44) gauge group, but preserves N = 4 supersymmetry.

• The vectors b1 and b2 defines the Z2 × Z2 orbifold twists, which breaks N = 4 to
N = 1 supersymmetry, and defines the U(1)3 × SO(10) gauge symmetry.

• The z1 and z2 vectors give rise to the SO(8)× SO(8) gauge group.

• The above choice of basis vectors is the most general which is compatible with a
SO(10) Kac–Moody level one algebra.



• The requirement of N = 1 SUSY implies the absence of the arguments (a, b) in the
phase factor Φ.

• The vector bosons from the untwisted sector generate an

SO(10)× U(1)3 × SO(8)2

gauge symmetry. Depending on the choices of the projection coefficients, extra gauge
bosons may arise from the x sector

x = F + S +

6∑
i=1

ei + z1 + z2 = {η̄123, ψ̄12345} ,

In that case the SO(10)× U(1)3 enhanced to E6 × U(1)2 .

• Other gauge enhancements :

SO(8)× SO(8)→ SO(16)→ E8, SO(10)× SO(8)→ SO(18),

SO(10)× SO(8)× SO(8)→ SO(26), SO(8)× U(1)→ SO(10)



3. Results

A) Statistical analysis of 1010 models with (2,2) and (2,0) 2d-superconformal:

B) Exact results for all 244 models with (2,0) 2d-superconformal

Our results (A+B) analysis revealed a bell shape distribution according to the net
number of chiral families
• The 15% of the models have three net chiral families.

• Mirror symmetry under the exchange of spinorials , and the anti-spinorials of SO(10)

S ↔ S̄

• Vector-Spinor duality symmetry. Additional symmetry in the distribution, under
exchange of vectorial, and spinorial plus anti–spinorial, representations of SO(10).

V ↔ (S + S̄)



The vector-spinor duality symmetry is evident when the SO(10) is enhanced to E6,
in which case #(16 + 16) = #(10) since the 27 and 2̄7 contains both the spinorials
and vectorials of the SO(10)

27 → 16 + 10 + 1, 27 → 16 + 10 + 1

Thanks to the algebraic form of the GGSO projections in the fermionic formulation,

we were able to demonstrate that the V ↔ St duality persists in all SO(10) vacua.

We further show the existence of self–dual vacua in which #(16 + 16) = #(10), but in

which the SO(10) symmetry is not enhanced to E6

Furthermore, we find that the V ↔ St duality holds separately for each of the three

twisted planes of the Z2 × Z2 orbifolds.

This precise observation, let us to conjecture that the origin of V ↔ St duality relies

in N = 2 string vacua.



4. The origin of V ↔ St duality

• The S, S and V representations of SO(10) comes from the three twisted N = 2
sectors

(h1 = 0, h2 = 1, h3 = −1), (h1 = 1, h2 = 0, h3 = −1), (h1 = 1, h2 = −1, h3 = 0)

The relevant part of the partition function in the first plane (h1 = 0, h2 = h3 = h = 1)

. . . θ̄
[
ε1
ζ1

]4

ψ̄1234
θ̄
[
ε1
ζ1

]
ψ̄5
θ̄
[
ε1
ζ1

]
η̄1

θ̄
[
ε1+h
ζ1+g

]
η̄2

θ̄
[
ε1+h
ζ1+g

]
η̄3

. . .Γ2,2

[
ti
si

]
where Γ2,2

[
ti
si

]
is the shifted lattice of the first plane

Γ2,2

[
ti
si

]
=

1

4

∑
(γi,δi)

θ
[
γ1
δ1

]
ω1,y1

θ̄
[
γ1
δ1

]
ω̄1,ȳ1

θ
[
γ2
δ2

]
ω2,y2

θ̄
[
γ2
δ2

]
ω̄2,ȳ2

(−)siγi+tiδi+siti



• The S or S representation arise when ε1 = 1

• The V representation arise when ε1 + h = 1

Four possibilities to couple the lattice characters (ti, si) to (εi, ζi), (h, g) :

• Inserting 1 → (2,2) superconformal, SO(10)→ E6, [St]= [V ]

• Inserting (−)sh+tg → freely acting orbifold, [St]= [V ]=0

• Inserting (−)sε1+tζ1 → (2,0) superconformal, only V

• Inserting (−)s(ε1+h)+t(ζ1+g) → (2,0) superconformal, only S, S



Starting from the self-dual configurations
[
1 , (−)sh+tg

]
and then perform an x-map

x = {ψ12345, η123}
we obtain the two other cases[

1 , (−)sh+tg
]
−→ (−)sε1+tζ1

[
1 , (−)sh+tg

]
=
[
(−)sε1+tζ1 , (−)s(ε1+h)+t(ζ1+g)

]
**************************************************************************
* The V ↔ St duality emerges from the initial (2, 2) super-conformal symmetry.
*
* −→ the triality symmetry of V, S, S representations of SO(8), [ψ5, η1, η2, η3]
*************************************************************************

* The different choices of GGSO coefficients break (spontaneously) (2, 2) → (2, 0)
* eliminating from the massless spectrum either
*
* V , or St or even both V and St
**************************************************************************



Figure 1:

Scater plot of log of the number of models vs the net number of chiral families
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Figure 2:

Total number of models versus net chirality.
The fit corresponds to the sum of Gaussians :

F = Ae−ax
2

+ Be−
ax2

4 , with A = 1.64× 1011, B = 4.39× 108 and a = 9.13× 10−2
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Figure 3:

Density plot of the number of models versus the number of vectors and spinors plus
anti–spinors.



Figure 4:

Percentage of models versus the number of N = 2 SO(12) spinorials/vectorials


