Non-Supersymmetric Seiberg Duality in orientifold QCD and Non-Critical Strings

Dan Israël, IAP

Liverpool Workshop, March 08

A. Armoni, D.I., G. Moraitis and V. Niarchos, arXiv:0801.0762 D.I., V. Niarchos, arXiv:0705.1240

- 4 同 6 4 日 6 4 日 6

Introduction

• IR dynamics of non-supersymmetric gauge and string theories are poorly understood as few tools are available

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- IR dynamics of non-supersymmetric gauge and string theories are poorly understood as few tools are available
- In gauge theory, the prominent example is QCD for which (non-lattice) quantitative results are still out of reach

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

- IR dynamics of non-supersymmetric gauge and string theories are poorly understood as few tools are available
- In gauge theory, the prominent example is QCD for which (non-lattice) quantitative results are still out of reach
- In string theory one expects that only string theories with some degree of spacetime supersymmetry are well-defined
 Phenomenological string models need spontaneous or explicit breaking of (global) susy, but at high mass levels the theory is approximately supersymmetric

Introduction

- IR dynamics of non-supersymmetric gauge and string theories are poorly understood as few tools are available
- In gauge theory, the prominent example is QCD for which (non-lattice) quantitative results are still out of reach
- In string theory one expects that only string theories with some degree of spacetime supersymmetry are well-defined
 Phenomenological string models need spontaneous or explicit breaking of (global) susy, but at high mass levels the theory is approximately supersymmetric
- These two issues are related by gauge/string correspondences
- Are there examples for which they can be addressed alltogether?

・ロト ・同ト ・ヨト ・ヨト

Outline

- Orientifold QCD, duality and planar equivalence
- **2** Seiberg duality at finite N: a conjecture
- Non-critical type 0' strings
- OQCD in non-critical strings and duality

Seiberg duality in SQCD Planar equivalence orientifold QCD

Seiberg duality in SQCD

 $\bullet~\mbox{IR}$ dynamics of $\mathcal{N}=1~\mbox{QCD}$ is well understood

(Seiberg 94)

-

イロト イポト イヨト イヨト

Seiberg duality in SQCD Planar equivalence orientifold QCD

Seiberg duality in SQCD

- IR dynamics of $\mathcal{N}=1$ QCD is well understood (Seiberg 94)
- SU(N_c) "electric" SQCD with N_f □, □ flavors has a dual "magnetic" description with gauge group SU(N_f-N_c) and an extra meson chiral multiplet → provides a weakly coupled description of the strongly coupled dynamics

・ロト ・得ト ・ヨト ・ヨト

Seiberg duality in SQCD Planar equivalence orientifold QCD

Seiberg duality in SQCD

- IR dynamics of $\mathcal{N}=1$ QCD is well understood
- (Seiberg 94)
- SU(N_c) "electric" SQCD with N_f □, □ flavors has a dual "magnetic" description with gauge group SU(N_f-N_c) and an extra meson chiral multiplet → provides a weakly coupled description of the strongly coupled dynamics
- Several phases as we vary N_f , with a dual description

イロト イポト イヨト イヨト 三日

Seiberg duality in SQCD Planar equivalence orientifold QCD

Seiberg duality in SQCD

• IR dynamics of $\mathcal{N}=1$ QCD is well understood

(Seiberg 94)

- SU(N_c) "electric" SQCD with N_f □, □ flavors has a dual "magnetic" description with gauge group SU(N_f-N_c) and an extra meson chiral multiplet → provides a weakly coupled description of the strongly coupled dynamics
- Several phases as we vary N_f, with a dual description
- For $\frac{3}{2}N_c < N_f < 3N_c$: *conformal window* \rightarrow interacting IR fixed point for both electric and magnetic Lagrangians

Seiberg duality in SQCD Planar equivalence orientifold QCD

Planar equivalence

 One would like to extend this analysis to non-supersymmetric gauge theories in QCD, only the upper bound of the conformal window is known (Banks, Zaks 82)

・ロト ・同ト ・ヨト ・ヨト

Seiberg duality in SQCD Planar equivalence orientifold QCD

Planar equivalence

- One would like to extend this analysis to non-supersymmetric gauge theories in QCD, only the upper bound of the conformal window is known (Banks, Zaks 82)
- One can define non-supersymmetric theories modding out ${\cal N}=1$ theories by a discrete symmetry Γ

Seiberg duality in SQCD Planar equivalence orientifold QCD

Planar equivalence

- One would like to extend this analysis to non-supersymmetric gauge theories in QCD, only the upper bound of the conformal window is known
 (Banks, Zaks 82)
- One can define non-supersymmetric theories modding out ${\cal N}=1$ theories by a discrete symmetry Γ
- Non-pert. equivalent to the "mother" theory in their common sector, in the N → ∞ limit, only if Γ is not spontaneously broken → planar equivalence (Kovtun Unsal Yaffe; Armoni Shifman Veneziano)

・ロッ ・雪 ・ ・ ヨ ・ ・

Seiberg duality in SQCD Planar equivalence orientifold QCD

Planar equivalence

- One would like to extend this analysis to non-supersymmetric gauge theories in QCD, only the upper bound of the conformal window is known
 (Banks, Zaks 82)
- One can define non-supersymmetric theories modding out ${\cal N}=1$ theories by a discrete symmetry Γ
- Non-pert. equivalent to the "mother" theory in their common sector, in the N → ∞ limit, only if Γ is not spontaneously broken → planar equivalence (Kovtun Unsal Yaffe; Armoni Shifman Veneziano)
- In string theory embeddings, this condition means no coupling to a closed string tachyon (Armoni 07)
 - \blacktriangleright rules out e.g. naive type 0B constructions or $AdS_5\times$ S^5/Γ non-susy orbifolds

イロト 不得 とうせん きょうしゅ

Seiberg duality in SQCD Planar equivalence orientifold QCD

Planar equivalence

- One would like to extend this analysis to non-supersymmetric gauge theories in QCD, only the upper bound of the conformal window is known (Banks, Zaks 82)
- One can define non-supersymmetric theories modding out ${\cal N}=1$ theories by a discrete symmetry Γ
- Non-pert. equivalent to the "mother" theory in their common sector, in the N → ∞ limit, only if Γ is not spontaneously broken → planar equivalence (Kovtun Unsal Yaffe; Armoni Shifman Veneziano)
- In string theory embeddings, this condition means no coupling to a closed string tachyon (Armoni 07)
 - \blacktriangleright rules out e.g. naive type 0B constructions or $AdS_5\times$ S^5/Γ non-susy orbifolds
- Planar equivalence provides exact non-perturbative results for (a restricted class of) non-susy gauge theories

Orientifold QCD

Seiberg duality in SQCD Planar equivalence orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

イロト イポト イヨト イヨト

-

Seiberg duality in SQCD Planar equivalence orientifold QCD

Orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

 "gluinos" : Ad(U(N_c)) → symmetric (OQCD-S) or antisymmetric (OQCD-AS) representation

・ロト ・同ト ・ヨト ・ヨト

-

Seiberg duality in SQCD Planar equivalence orientifold QCD

Orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

- "gluinos" : $Ad(U(N_c)) \longrightarrow symmetric$ (OQCD-S) or antisymmetric (OQCD-AS) representation
- $\bullet \ quarks: \ fundamental \longleftrightarrow anti-fundamental \\$
- relevant symmetry here: charge conjugation
- → OQCD-AS with $N_c=3$, $N_f=0$: one flavor QCD!

・ロト ・得ト ・ヨト ・ヨト

Orientifold QCD

Seiberg duality in SQCD Planar equivalence orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

- gluinos" : Ad(U(N_c)) → symmetric (OQCD-S) or antisymmetric (OQCD-AS) representation
- $\bullet \ quarks: \ fundamental \longleftrightarrow anti-fundamental$
- relevant symmetry here: charge conjugation
 OQCD-AS with N_c=3, N_f = 0 : one flavor QCD!

✓ Planar equivalence with SQCD proven (Armoni, Shifman, Veneziano)

・ロト ・同ト ・ヨト ・ヨト

Orientifold QCD

Seiberg duality in SQCD Planar equivalence orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

- gluinos" : Ad(U(N_c)) → symmetric (OQCD-S) or antisymmetric (OQCD-AS) representation
- $\bullet \ quarks: \ fundamental \longleftrightarrow anti-fundamental$
- relevant symmetry here: charge conjugation
 OQCD-AS with N_c=3, N_f = 0 : one flavor QCD!
- ✓ Planar equivalence with SQCD proven (Armoni, Shifman, Veneziano)
 - \bullet Similarly, an orientifold "magnetic" theory can be defined for N_{c},N_{f} $\to\infty,$ N_{f}/N_{c} fixed

イロト イポト イヨト イヨト 三日

Orientifold QCD

Seiberg duality in SQCD Planar equivalence orientifold QCD

✓ Orientifold QCD is a variant of $U(N_c)$ SQCD with N_f flavors with fermions transforming as:

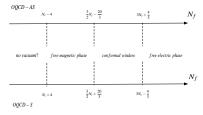
- "gluinos" : $Ad(U(N_c)) \longrightarrow symmetric$ (OQCD-S) or antisymmetric (OQCD-AS) representation
- $\bullet \ quarks: \ fundamental \longleftrightarrow anti-fundamental$
- relevant symmetry here: charge conjugation
 OQCD-AS with N_c=3, N_f = 0 : one flavor QCD!
- ✓ Planar equivalence with SQCD proven (Armoni, Shifman, Veneziano)
 - \bullet Similarly, an orientifold "magnetic" theory can be defined for N_{c},N_{f} $\to\infty,$ N_{f}/N_{c} fixed
 - Predicts a non-supersymmetric Seiberg duality in OQCDs in this large N limit

イロト イポト イヨト イヨト 三日

Seiberg duality at finite N: a conjecture

• We propose that (N_c, N_f) OQCD-S/OQCD-AS is dual to a "magnetic theory" with $(N_f - N_c \mp 4, N_f)$ for any N_f and any $N_c > 5$ (Armoni, DI, Moraitis, Niarchos 08)

・ 同 ト ・ ヨ ト ・ ヨ ト


Seiberg duality at finite N: a conjecture

- We propose that (N_c, N_f) OQCD-S/OQCD-AS is dual to a "magnetic theory" with $(N_f N_c \mp 4, N_f)$ for any N_f and any $N_c > 5$ (Armoni, DI, Moraitis, Niarchos 08)
- 't Hooft anomaly matching is satisfied for any finite N_c, N_f
 ➡ good consistency check but not powerfull enough

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Seiberg duality at finite N: a conjecture

- We propose that (N_c, N_f) OQCD-S/OQCD-AS is dual to a "magnetic theory" with $(N_f N_c \mp 4, N_f)$ for any N_f and any $N_c > 5$ (Armoni, DI, Moraitis, Niarchos 08)
- 't Hooft anomaly matching is satisfied for any finite N_c, N_f
 ➡ good consistency check but not powerfull enough
- This duality if true predicts the following phase structure, with a conformal window $\frac{3}{2}N_c \pm \frac{20}{3} < N_f < 3N_c \mp \frac{4}{3}$:

more evidence comes from a string theory construction.

String theories without fermions Non-critical type 0'A theories

String theories without fermions

・ 同 ト ・ ヨ ト ・ ヨ ト

String theories without fermions Non-critical type 0'A theories

String theories without fermions

- One expects a string theory realization of OQCD to be tachyon-free and without space-time fermions (no fermionic gauge-inv. operators) > do such string theories exist ?
- Kutasov-Seiberg theorem, based on modular invariance, states that no-tachyon condition requires asymptotic susy at high energies → Loophole : unoriented strings ! Z = ○+S

String theories without fermions Non-critical type 0'A theories

String theories without fermions

- One expects a string theory realization of OQCD to be tachyon-free and without space-time fermions (no fermionic gauge-inv. operators) > do such string theories exist ?
- Kutasov-Seiberg theorem, based on modular invariance, states that no-tachyon condition requires asymptotic susy at high energies → Loophole : unoriented strings ! Z = ○+S
- Sagnotti orientifold of type 0B (type 0'B) is tachyon-free but RR tadpole → add D9-branes, NSNS tadpole left (Sagnotti 95)

$$\Omega' \ : |0\rangle_{\rm \scriptscriptstyle NS} \to -|0\rangle_{\rm \scriptscriptstyle NS} \ , \ \ \psi^i_r \bar\psi^j_r |0\rangle_{\rm \scriptscriptstyle NS} \to \psi^j_r \bar\psi^i_r |0\rangle_{\rm \scriptscriptstyle NS}$$

- 4 同 6 4 日 6 4 日 6

String theories without fermions Non-critical type 0'A theories

String theories without fermions

- One expects a string theory realization of OQCD to be tachyon-free and without space-time fermions (no fermionic gauge-inv. operators) > do such string theories exist ?
- Kutasov-Seiberg theorem, based on modular invariance, states that no-tachyon condition requires asymptotic susy at high energies → Loophole : unoriented strings ! Z = ○+S
- Sagnotti orientifold of type 0B (type 0'B) is tachyon-free but RR tadpole → add D9-branes, NSNS tadpole left (Sagnotti 95)

$$\Omega' : |0
angle_{
m NS}
ightarrow -|0
angle_{
m NS} , \ \psi^{i}_{r} ar{\psi}^{j}_{r} |0
angle_{
m NS}
ightarrow \psi^{j}_{r} ar{\psi}^{j}_{r} |0
angle_{
m NS}$$

• Only such string theories known with full tree-level consistency: *non-critical type 0' strings* (DI, Niarchos)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・

String theories without fermions Non-critical type 0'A theories

Non-critical type 0'A theories

Start e.g. with type 0A on ℝ^{3,1} × [N = 2 Liouville]
 → non-chiral GSO projection, contains a tachyon sector + doubling of the RR forms

・ロト ・同ト ・ヨト ・ヨト

String theories without fermions Non-critical type 0'A theories

Non-critical type 0'A theories

- Start e.g. with type 0A on R^{3,1} × [N = 2 Liouville]
 ➡ non-chiral GSO projection, contains a tachyon sector + doubling of the RR forms
- Due to linear dilaton ϕ , positive mass shift (X at $R = \sqrt{2}$): $m^2 = p_\mu p^\mu + p_\phi^2 + \frac{1}{4} + \frac{1}{2}(n_x + w_x)^2 + \dots - \frac{1}{2}$ imposed not enough to lift the tachyon

・ 同 ト ・ ヨ ト ・ ヨ ト …

String theories without fermions Non-critical type 0'A theories

Non-critical type 0'A theories

- Start e.g. with type 0A on R^{3,1} × [N = 2 Liouville]
 ➡ non-chiral GSO projection, contains a tachyon sector + doubling of the RR forms
- Due to linear dilaton ϕ , positive mass shift (X at $R = \sqrt{2}$): $m^2 = p_\mu p^\mu + p_\phi^2 + \frac{1}{4} + \frac{1}{2}(n_x + w_x)^2 + \dots - \frac{1}{2}$ imposed not enough to lift the tachyon
- With the A-type parity P = ΩI_x(-)^{n+w+F} of N = 2 Liouville, one gets a non-critical analogue of type 0'B orientifold

・ 同 ト ・ ヨ ト ・ ヨ ト ・

String theories without fermions Non-critical type 0'A theories

Non-critical type 0'A theories

- Start e.g. with type 0A on R^{3,1} × [N = 2 Liouville]
 ➡ non-chiral GSO projection, contains a tachyon sector + doubling of the RR forms
- Due to linear dilaton ϕ , positive mass shift (X at $R = \sqrt{2}$): $m^2 = p_\mu p^\mu + p_\phi^2 + \frac{1}{4} + \frac{1}{2}(n_x + w_x)^2 + \dots - \frac{1}{2}$ impose not enough to lift the tachyon
- With the A-type parity P = ΩI_x(-)^{n+w+F} of N = 2 Liouville, one gets a non-critical analogue of type 0'B orientifold
- Crosscap wavefunction can be determined by modular bootstrap from the Möbius amplitude:

$$\mathrm{Tr}_{\mathrm{OPEN},|B\rangle}\left(\mathcal{P}e^{-\pi tH_{0}}\right) = \sum_{\mathsf{closed}} \langle B|\mathcal{P}e^{-\frac{4\pi t}{H_{c}}}|\mathcal{C}_{\mathcal{P}}\rangle$$

▶ Needs \mathcal{P} -matrix elements for $\mathcal{N} = 2$ characters $(\tau \rightarrow -\frac{1}{4\tau})$

イロン 不同 とくほう イロン

String theories without fermions Non-critical type 0'A theories

Non-critical type 0'A theories

- Start e.g. with type 0A on R^{3,1} × [N = 2 Liouville]
 ➡ non-chiral GSO projection, contains a tachyon sector + doubling of the RR forms
- Due to linear dilaton ϕ , positive mass shift (X at $R = \sqrt{2}$): $m^2 = p_\mu p^\mu + p_\phi^2 + \frac{1}{4} + \frac{1}{2}(n_x + w_x)^2 + \dots - \frac{1}{2}$ impose not enough to lift the tachyon
- With the A-type parity P = ΩI_x(-)^{n+w+F} of N = 2 Liouville, one gets a non-critical analogue of type 0'B orientifold
- Crosscap wavefunction can be determined by modular bootstrap from the Möbius amplitude:

$$\mathrm{Tr}_{\mathrm{OPEN},|B\rangle}\left(\mathcal{P}e^{-\pi t\mathcal{H}_{0}}\right) = \sum_{\mathsf{closed}} \langle B|\mathcal{P}e^{-\frac{4\pi t}{\mathcal{H}_{c}}}|\mathcal{C}_{\mathcal{P}}\rangle$$

▶ Needs \mathcal{P} -matrix elements for $\mathcal{N} = 2$ characters $(\tau \rightarrow -\frac{1}{4\tau})$

Color and flavor branes Gauge duality in non-critical strings

OQCD in non-critical strings: framework

• Adding D-branes one can engineer OQCD in type 0'A NCS

イロト イポト イヨト イヨト

Color and flavor branes Gauge duality in non-critical strings

OQCD in non-critical strings: framework

- Adding D-branes one can engineer OQCD in type 0'A NCS
- Not a coincidence, as the non-critical type 0'A represents a configuration of two orthogonal NS5-branes with an O'4-plane, in a suitable decoupling limit
 - ➡ OQCD realized as some sort of "near-horizon"

Hanany-Witten (HW) construction NS5 D4's 0'4

NS5 D4's O'4

・ 同 ト ・ ヨ ト ・ ヨ ト

Color and flavor branes Gauge duality in non-critical strings

OQCD in non-critical strings: framework

- Adding D-branes one can engineer OQCD in type 0'A NCS
- Not a coincidence, as the non-critical type 0'A represents a configuration of two orthogonal NS5-branes with an O'4-plane, in a suitable decoupling limit
 OQCD realized as some sort of "near-horizon" Hanany-Witten (HW) construction
- Note that the usual HW approach is not under control here as the "bulk" away from the O'4 plane is tachyonic these tachyonic modes are removed in the near-horizon limit !

・ 同 ト ・ ヨ ト ・ ヨ ト

OQCD in non-critical strings: framework

- Adding D-branes one can engineer OQCD in type 0'A NCS
- Not a coincidence, as the non-critical type 0'A represents a configuration of two orthogonal NS5-branes with an O'4-plane, in a suitable decoupling limit
 OQCD realized as some sort of "near-horizon" Hanany-Witten (HW) construction
- Note that the usual HW approach is not under control here as the "bulk" away from the O'4 plane is tachyonic these tachyonic modes are removed in the near-horizon limit !
- RR charge jump of the orientifold across the NS5-branes accounted for by the crosscap state found ➡ extended orientifold (FZZ-like) contains a localized piece (ZZ-like) with opposite RR-charge

Color and flavor branes Gauge duality in non-critical strings

Color and flavor branes for OQCD

 D-branes boundary states same as the NSNS part of their type IIA analogues → the latter realize N = 1 SQCD

(Fotopoulos Niarchos Prezas; Ashok Murthy Troost 05)

Color and flavor branes Gauge duality in non-critical strings

Color and flavor branes for OQCD

 D-branes boundary states same as the NSNS part of their type IIA analogues → the latter realize N = 1 SQCD

(Fotopoulos Niarchos Prezas; Ashok Murthy Troost 05)

 Localized D4-branes near the Liouville wall (ZZ-like): color degrees of freedom → with the Möbius amplitude contributing to the open RR sector, symmetric or antisymmetric fermions

Color and flavor branes Gauge duality in non-critical strings

Color and flavor branes for OQCD

 D-branes boundary states same as the NSNS part of their type IIA analogues → the latter realize N = 1 SQCD

(Fotopoulos Niarchos Prezas; Ashok Murthy Troost 05)

- Localized D4-branes near the Liouville wall (ZZ-like): color degrees of freedom with the Möbius amplitude contributing to the open RR sector, symmetric or antisymmetric fermions
- Extended D4-branes (FZZT-like): no 4d degrees of freedom on their worldvolume. Open strings between localized and extended branes realize flavor degrees of freedom

・ロッ ・雪 ・ ・ ヨ ・ ・

Color and flavor branes Gauge duality in non-critical strings

Color and flavor branes for OQCD

 D-branes boundary states same as the NSNS part of their type IIA analogues → the latter realize N = 1 SQCD

(Fotopoulos Niarchos Prezas; Ashok Murthy Troost 05)

- Localized D4-branes near the Liouville wall (ZZ-like): color degrees of freedom with the Möbius amplitude contributing to the open RR sector, symmetric or antisymmetric fermions
- Extended D4-branes (FZZT-like): no 4d degrees of freedom on their worldvolume. Open strings between localized and extended branes realize flavor degrees of freedom
- Realize "electric" OQCD-S/OQCD-AS → leading order backreaction (holographic β-function) suggests that the gauge theory has a quartic coupling, also for SQCD model: ∫ d²θ QQQQ.

イロト イポト イヨト イヨト 三日

Color and flavor branes Gauge duality in non-critical strings

Gauge duality in non-critical strings

• $\mathcal{N}=2$ Liouville has a potential $\mu\int\mathrm{d}^2\theta\,e^{\Phi/\sqrt{2}}$ with $\mu\in\mathbb{C}$

- 4 同 6 4 日 6 4 日 6

Color and flavor branes Gauge duality in non-critical strings

Gauge duality in non-critical strings

- $\mathcal{N}=2$ Liouville has a potential $\mu\int\mathrm{d}^2\theta\,e^{\Phi/\sqrt{2}}$ with $\mu\in\mathbb{C}$
- μ is the NS5-branes relative position in the HW picture • Seiberg duality for SQCD obtained through the transformation $\mu \rightarrow -\mu$ (Elitzur et al. 97)

・ロト ・同ト ・ヨト ・ヨト

Color and flavor branes Gauge duality in non-critical strings

Gauge duality in non-critical strings

- $\mathcal{N}=2$ Liouville has a potential $\mu\int\mathrm{d}^2\theta\,e^{\Phi/\sqrt{2}}$ with $\mu\in\mathbb{C}$
- μ is the NS5-branes relative position in the HW picture • Seiberg duality for SQCD obtained through the transformation $\mu \rightarrow -\mu$ (Elitzur et al. 97)
- Reproduced in the non-critical string context using brane and crosscap monodromies under $\mu \rightarrow -\mu$ (Murthy Troost 06)

★In OQCD, we found that duality gives a magnetic theory of the same type, with $N_c \rightarrow N_f - N_c \mp 4$

- No massless meson because of the quartic coupling
 - monodromies consistent with backreaction

イロト 不得 とくほ とくほ とうほ

Color and flavor branes Gauge duality in non-critical strings

Gauge duality in non-critical strings

- $\mathcal{N}=2$ Liouville has a potential $\mu\int\mathrm{d}^2\theta\,e^{\Phi/\sqrt{2}}$ with $\mu\in\mathbb{C}$
- μ is the NS5-branes relative position in the HW picture • Seiberg duality for SQCD obtained through the transformation $\mu \rightarrow -\mu$ (Elitzur et al. 97)
- Reproduced in the non-critical string context using brane and crosscap monodromies under $\mu \rightarrow -\mu$ (Murthy Troost 06)

★In OQCD, we found that duality gives a magnetic theory of the same type, with $N_c \rightarrow N_f - N_c \mp 4$

- No massless meson because of the quartic coupling
 monodromies consistent with backreaction
- Due the orientifold, only $\mu \in \mathbb{R}$ allowed \blacktriangleright one goes through strong coupling $\mu = 0$, creating ± 4 extra color branes

→ however no extra stringy dynamics at $\mu = 0$ is expected to affect the gauge theory IR dynamics

Conclusions

Color and flavor branes Gauge duality in non-critical strings

- String theories with only bosonic degrees of freedom and full tree-level stability (tachyon- and tadpole- free) are very rare
- On the gauge theory side, few non-susy models inherit properties of susy theories through planar equivalence
- Not surprisingly one can engineer such gauge theories (orientifold QCD) in such string theories (non-critical 0'A)
- The string theory picture strongly supports a Seiberg duality in OQCD at finite *N*, and predicts an exact conformal window
- A genuine holographic duality pair could be constructed if one knew how to include D-brane and orientifold backreaction properly

イロン 不同 とくほう イロン