Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlations in the Landscape

Florian Gmeiner

(NIKHEF, Amsterdam)

work in progress; some stuff in

arxiv:0710.2468

Liverpool, 27/03/08

Correlations in the Landscape	Outline
Florian Gmeiner	
Introduction	
Correlations	1 Introduction
Models	
Results	Correlations
Conclusions	
	3 Models
	4 Results
	Δ^+ vs Δ^- χ^{Sym} vs. χ^{Anti}
	5 Conclusions

The Landscape

Florian Gmeiner

Introduction

- Correlations
- Models
- Results
- Conclusions

Problems

- It is too big to analyse with a case-by-case strategy
 → approximations, statistics.
- How to make predictions?
 - \rightsquigarrow Selection mechanism / Anthropic reasoning?

'Bottom-up" approach

- No assumptions about underlying mechanisms.
- Search for correlations between 4d properties.
- Compare results of (large numbers) of different models.

The Landscape

Florian Gmeiner

Introduction

- Correlations
- Models
- Results
- Conclusions

Problems

- It is too big to analyse with a case-by-case strategy
 → approximations, statistics.
- How to make predictions?
 - \rightsquigarrow Selection mechanism / Anthropic reasoning?

"Bottom-up" approach

- No assumptions about underlying mechanisms.
- Search for correlations between 4d properties.
- Compare results of (large numbers) of different models.

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Methods

Correlations

Obtain statistical results about correlations between 4d properties in large sets of models by

- complete computation of all possible solutions (impossible) or
- choosing subsets in parameterspace, preferably completely at random. Due to computational complexity a random choice is not always possible.

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Caveats

Correlations

The choice of subsets could influence the result *··· unwanted correlations ···* make sure that one either

• uses subsets with the same probability density as the full set of solutions (hard) or

• uses different weights for the subsets (harder)

In any case one should repeat the analysis for a large set of subsets to minimise statistical error.

Models

Florian Gmeiner

- Introduction
- Correlations
- Models
- Results
- Conclusions

• Type II orbifolds with D6-branes, $M^6 = T^6/G$ with $G \in \{\mathbb{Z}_2 \times \mathbb{Z}_2, \mathbb{Z}_6, \mathbb{Z}_6'\}.$

[many people; see also talks by D. Bailin, G. Honecker]

- N = 1 susy, tadpoles cancelled.
- 4d properties accessible to algebraic methods:
 - gauge group
 - massless matter spectrum (chiral & non-chiral)
 - gauge couplings
- Compare with results of Gepner-Models. [Thesis of Tim Dijkstra]

Correlations in Chiral matter

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

As an example we will use the chiral matter spectrum. Number of massless chiral matter states for branes a and b, wrapping cycles π_a and π_b in

- bifundamental reps.: $\chi^{ab} = \pi_a \circ \pi_b$,
- symmetric reps.: $\chi^{Anti_a} = \frac{1}{2} \left(\pi_a \circ \pi_{a'} \pi_a \circ \pi_{O6} \right)$,
- antisymmetric reps.: $\chi^{Sym_a} = \frac{1}{2} (\pi_a \circ \pi a' + \pi_a \circ \pi_{O6}).$

No restrictions imposed on the spectrum, all possibible models are considered.

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

• As a toy example we consider the correlations of values of

$$\Delta^{\pm} := \chi^{ab} \pm \chi^{ab'}$$

and χ^{Anti_a} / χ^{Sym_a} for different constructions.

• Compare the results with those for a *random pairing* of the same set of branes.

Correlations in Choice of samples

Florian Gmeiner

- Introduction
- Correlations
- Models
- Results
- Conclusions

Different strategies to obtain statistical results are used:

- For $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ ($\mathcal{O}(10^{10})$ models) we use an explicit cutoff in the parameter space.
- For T^6/\mathbb{Z}_6 ($\mathcal{O}(10^{28})$) and T^6/\mathbb{Z}'_6 ($\mathcal{O}(10^{23})$ models) we use several random samples of different sizes.
- The Gepner models are a subset of models containing a realisation of the standard model *without tadpole cancellation* checked. This is a *biased subset*.

 Δ^+ vs Δ^-

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of bifundamental matter representations on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$.

Left: actual result, right: random distribution.

Correlation between number of bifundamental matter representations on $T^6/\mathbb{Z}_6.$

Left: actual result, right: random distribution.

 Δ^+ vs Δ^-

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of bifundamental matter representations on T^6/\mathbb{Z}'_6 .

Left: actual result, right: random distribution.

 Δ^+ vs Δ^-

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of bifundamental matter representations in Gepner subset.

Left: actual result, right: random distribution.

 χ^{Sym} vs. χ^{Anti}

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of symmetric and antisymmetric representations on $\mathit{T}^6/\mathbb{Z}_2\times\mathbb{Z}_2.$

Left: actual result, right: random distribution.

Correlation between number of symmetric and antisymmetric representations on $\mathit{T}^6/\mathbb{Z}_6.$

Left: actual result, right: random distribution.

 χ^{Sym} vs. χ^{Anti}

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of symmetric and antisymmetric representations on T^6/\mathbb{Z}_6' .

Left: actual result, right: random distribution.

 χ^{Sym} vs. χ^{Anti}

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Correlation between number of symmetric and antisymmetric representations in Gepner subset.

Left: actual result, right: random distribution.

Florian Gmeiner

Introduction

Correlations

Models

Results

Conclusions

Summary

Conclusions

- Using a very simple example we showed that interesting correlations might exist.
- If true in a wider range of constructions this could lead to interesting insights into the structure of the Landscape.

Outlook

- More systematic approach using a bigger class of observables.
- Include more sophisticated compactifications, in particular also heterotic ones.

Florian Gmeiner

Introduction

Correlations

Models

- Results
- Conclusions

Summary

Conclusions

- Using a very simple example we showed that interesting correlations might exist.
- If true in a wider range of constructions this could lead to interesting insights into the structure of the Landscape.

Outlook

- More systematic approach using a bigger class of observables.
- Include more sophisticated compactifications, in particular also heterotic ones.